Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Conformal geometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====The conformal Lie algebras==== To describe the groups and algebras involved in the flat model space, fix the following form on {{nowrap|'''R'''<sup>''p''+1,''q''+1</sup>}}: :<math> Q=\begin{pmatrix} 0&0&-1\\ 0&J&0\\ -1&0&0 \end{pmatrix} </math> where ''J'' is a quadratic form of signature {{nowrap|(''p'', ''q'')}}. Then {{nowrap|1=''G'' = O(''p'' + 1, ''q'' + 1)}} consists of {{nowrap|(''n'' + 2) Γ (''n'' + 2)}} matrices stabilizing {{nowrap|1=''Q'' : <sup>t</sup>''MQM'' = ''Q''}} (the superscript ''t'' means transpose). The Lie algebra admits a [[Cartan decomposition]] :<math>\mathbf{g}=\mathbf{g}_{-1}\oplus\mathbf{g}_0\oplus\mathbf{g}_1</math> where :<math> \mathbf{g}_{-1} = \left\{\left. \begin{pmatrix} 0&^tp&0\\ 0&0&J^{-1}p\\ 0&0&0 \end{pmatrix}\right| p\in\mathbb{R}^n\right\},\quad \mathbf{g}_{-1} = \left\{\left. \begin{pmatrix} 0&0&0\\ ^tq&0&0\\ 0&qJ^{-1}&0 \end{pmatrix}\right| q\in(\mathbb{R}^n)^*\right\} </math> :<math> \mathbf{g}_0 = \left\{\left. \begin{pmatrix} -a & 0 & 0\\ 0 & A & 0\\ 0 & 0 & a \end{pmatrix} \right| A \in \mathfrak{so} ( p , q ) , a \in \mathbb{R} \right\} .</math> Alternatively, this decomposition agrees with a natural Lie algebra structure defined on {{nowrap|'''R'''<sup>''n''</sup> β '''cso'''(''p'', ''q'') β ('''R'''<sup>''n''</sup>)<sup>β</sup>}}. The stabilizer of the null ray pointing up the last coordinate vector is given by the [[Borel subalgebra]] :'''h''' = '''g'''<sub>0</sub> β '''g'''<sub>1</sub>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)