Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convex uniform honeycomb
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Frieze forms == If [[Cell (mathematics)|cells]] are allowed to be [[uniform tiling]]s, more uniform honeycombs can be defined: Families: *<math>{\tilde{C}}_2</math>Γ<math>A_1</math>: [4,4,2] {{CDD|node|4|node|4|node|2|node}} ''Cubic slab honeycombs'' (3 forms) *<math>{\tilde{G}}_2</math>Γ<math>A_1</math>: [6,3,2] {{CDD|node|6|node|3|node|2|node}} ''Tri-hexagonal slab honeycombs'' (8 forms) * <math>{\tilde{A}}_2</math>Γ<math>A_1</math>: [(3,3,3),2] {{CDD|node|split1|branch|2|node}} ''Triangular slab honeycombs'' (No new forms) *<math>{\tilde{I}}_1</math>Γ<math>A_1</math>Γ<math>A_1</math>: [β,2,2] {{CDD|node|infin|node|2|node|2|node}} = {{CDD|node|infin|node|2|node|4|node}} ''Cubic column honeycombs'' (1 form) *<math>I_2(p)</math>Γ<math>{\tilde{I}}_1</math>: [p,2,β] {{CDD|node|p|node|2|node|infin|node}} ''Polygonal column honeycombs'' (analogous to [[duoprism]]s: these look like a single infinite tower of p-gonal prisms, with the remaining space filled with [[apeirogonal prism]]s) * <math>{\tilde{I}}_1</math>Γ<math>{\tilde{I}}_1</math>Γ<math>A_1</math>: [β,2,β,2] = [4,4,2] - {{CDD|node|infin|node|2|node|infin|node|2|node}} = {{CDD|node|4|node|4|node|2|node}} (Same as cubic slab honeycomb family) {| class=wikitable style="text-align:center; width:540px;" |+ Examples (partially drawn) |- !Cubic slab honeycomb<br/>{{CDD|node_1|4|node|4|node|2|node_1}} !Alternated hexagonal slab honeycomb<br/>{{CDD|node_h|2x|node_h|6|node|3|node}} !Trihexagonal slab honeycomb<br/>{{CDD|node|6|node_1|3|node|2|node_1}} |- |[[File:Cubic semicheck.png|180px]] |[[File:Tetroctahedric semicheck.png|180px]] |[[File:Trihexagonal prism slab honeycomb.png|180px]] |- |[[File:X4o4o2ox vertex figure.png|180px]]<br/>(4) 4<sup>3</sup>: [[cube]]<br/>(1) 4<sup>4</sup>: [[square tiling]] |[[File:O6x3o2x vertex figure.png|180px]]<br/>(4) 3<sup>3</sup>: [[tetrahedron]]<br/>(3) 3<sup>4</sup>: [[octahedron]]<br/>(1) 3<sup>6</sup>: [[triangular tiling]] |[[File:O3o6s2s vertex figure.png|180px]]<br/>(2) 3.4.4: [[triangular prism]]<br/>(2) 4.4.6: [[hexagonal prism]]<br/>(1) (3.6)<sup>2</sup>: [[trihexagonal tiling]] |} The first two forms shown above are [[semiregular polytope|semiregular]] (uniform with only regular facets), and were listed by [[Thorold Gosset]] in 1900 respectively as the ''3-ic semi-check'' and ''tetroctahedric semi-check''.<ref>{{cite journal | last=Gosset | first=Thorold | authorlink = Thorold Gosset | title = On the regular and semi-regular figures in space of ''n'' dimensions | journal = [[Messenger of Mathematics]] | volume = 29 | pages = 43–48 | year = 1900}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)