Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Coordinate system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Orientation-based coordinates== In [[geometry]] and [[kinematics]], coordinate systems are used to describe the (linear) position of points and the [[orientation (geometry)|angular position]] of axes, planes, and [[rigid body|rigid bodies]].<ref>{{cite book |title=Analytical Mechanics of Space Systems |author1-link=Hanspeter Schaub |author2-link=John Junkins |author1=Hanspeter Schaub |author2=John L. Junkins |chapter=Rigid body kinematics |page=71 |chapter-url=https://books.google.com/books?id=qXvESNWrfpUC&pg=PA71 |isbn=1-56347-563-4 |year=2003 |publisher=American Institute of Aeronautics and Astronautics}}</ref> In the latter case, the orientation of a second (typically referred to as "local") coordinate system, fixed to the node, is defined based on the first (typically referred to as "global" or "world" coordinate system). For instance, the orientation of a rigid body can be represented by an orientation [[Matrix (mathematics)|matrix]], which includes, in its three columns, the [[Cartesian coordinates]] of three points. These points are used to define the orientation of the axes of the local system; they are the tips of three [[unit vector]]s aligned with those axes.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)