Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Coset
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Double cosets == {{main|Double coset}} Given two subgroups, {{math|''H''}} and {{math|''K''}} (which need not be distinct) of a group {{math|''G''}}, the '''double cosets''' of {{math|''H''}} and {{math|''K''}} in {{math|''G''}} are the sets of the form {{math|1=''HgK'' = {{mset|''hgk'' : ''h'' an element of ''H'', ''k'' an element of ''K''}}}}. These are the left cosets of {{math|''K''}} and right cosets of {{math|''H''}} when {{math|1=''H'' = 1}} and {{math|1=''K'' = 1}} respectively.<ref>{{harvnb|Scott|1987|loc= p. 19}}</ref> Two double cosets {{math|''HxK''}} and {{math|''HyK''}} are either disjoint or identical.<ref name=Hall>{{harvnb|Hall|1959|loc=pp. 14β15}}</ref> The set of all double cosets for fixed {{mvar|H}} and {{mvar|K}} form a partition of {{mvar|G}}. A double coset {{math|''HxK''}} contains the complete right cosets of {{mvar|H}} (in {{mvar|G}}) of the form {{math|''Hxk''}}, with {{mvar|k}} an element of {{mvar|K}} and the complete left cosets of {{mvar|K}} (in {{mvar|G}}) of the form {{math|''hxK''}}, with {{mvar|h}} in {{mvar|H}}.<ref name=Hall /> === Notation === Let {{math|''G''}} be a group with subgroups {{math|''H''}} and {{math|''K''}}. Several authors working with these sets have developed a specialized notation for their work, where<ref>{{citation|first=Gary M.|last=Seitz|chapter=Double Cosets in Algebraic Groups|editor1-first=R.W.|editor1-last=Carter|editor2-first=J.|editor2-last=Saxl|title=Algebraic Groups and their Representation| year=1998|pages=241β257|publisher=Springer|doi=10.1007/978-94-011-5308-9_13|isbn=978-0-7923-5292-1}}</ref><ref>{{citation | first=W. Ethan|last=Duckworth|title=Infiniteness of double coset collections in algebraic groups|journal=Journal of Algebra|volume=273|issue=2|pages=718β733|year=2004|publisher=Elsevier|doi=10.1016/j.jalgebra.2003.08.011|arxiv=math/0305256| s2cid=17839580}}</ref> * {{math|''G''{{hsp}}/{{hsp}}''H''}} denotes the set of left cosets {{math|{{mset|''gH'' : ''g'' in ''G''}}}} of {{math|''H''}} in {{math|''G''}}. * {{math|''H''{{hsp}}\{{hsp}}''G''}} denotes the set of right cosets {{math|{{mset|''Hg'' : ''g'' in ''G''}}}} of {{math|''H''}} in {{math|''G''}}. * {{math|''K''{{hsp}}\{{hsp}}''G''{{hsp}}/{{hsp}}''H''}} denotes the set of double cosets {{math|{{mset|''KgH'' : ''g'' in ''G''}}}} of {{math|''H''}} and {{math|''K''}} in {{math|''G''}}, sometimes referred to as ''double coset space''. * {{math|''G''{{hsp}}//{{hsp}}''H''}} denotes the double coset space {{math|''H''{{hsp}}\{{hsp}}''G''{{hsp}}/{{hsp}}''H''}} of the subgroup {{mvar|H}} in {{mvar|G}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)