Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covariance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Auto-covariance matrix of real random vectors === {{main|Auto-covariance matrix}} For a vector <math>\mathbf{X} = \begin{bmatrix} X_1 & X_2 & \dots & X_m \end{bmatrix}^\mathrm{T}</math> of <math>m</math> jointly distributed random variables with finite second moments, its auto-covariance matrix (also known as the '''variance–covariance matrix''' or simply the '''covariance matrix''') <math>\operatorname{K}_{\mathbf{X}\mathbf{X}}</math> (also denoted by <math>\Sigma(\mathbf{X})</math> or <math>\operatorname{cov}(\mathbf{X}, \mathbf{X})</math>) is defined as<ref name=Gubner>{{cite book |first=John A. |last=Gubner |year=2006 |title=Probability and Random Processes for Electrical and Computer Engineers |publisher=Cambridge University Press |isbn=978-0-521-86470-1}}</ref>{{rp|p=335}} <math display="block">\begin{align} \operatorname{K}_\mathbf{XX} = \operatorname{cov}(\mathbf{X}, \mathbf{X}) &= \operatorname{E}\left[(\mathbf{X} - \operatorname{E}[\mathbf{X}]) (\mathbf{X} - \operatorname{E}[\mathbf{X}])^\mathrm{T}\right] \\ &= \operatorname{E}\left[\mathbf{XX}^\mathrm{T}\right] - \operatorname{E}[\mathbf{X}]\operatorname{E}[\mathbf{X}]^\mathrm{T}. \end{align}</math> Let <math>\mathbf{X}</math> be a [[random vector]] with covariance matrix {{math|Σ}}, and let {{math|'''A'''}} be a matrix that can act on <math>\mathbf{X}</math> on the left. The covariance matrix of the matrix-vector product {{math|'''A X'''}} is: <math display="block">\begin{align} \operatorname{cov}(\mathbf{AX},\mathbf{AX}) &= \operatorname{E}\left[\mathbf{AX(A}\mathbf{X)}^\mathrm{T}\right] - \operatorname{E}[\mathbf{AX}] \operatorname{E}\left[(\mathbf{A}\mathbf{X})^\mathrm{T}\right] \\ &= \operatorname{E}\left[\mathbf{AXX}^\mathrm{T}\mathbf{A}^\mathrm{T}\right] - \operatorname{E}[\mathbf{AX}] \operatorname{E}\left[\mathbf{X}^\mathrm{T}\mathbf{A}^\mathrm{T}\right] \\ &= \mathbf{A}\operatorname{E}\left[\mathbf{XX}^\mathrm{T}\right]\mathbf{A}^\mathrm{T} - \mathbf{A}\operatorname{E}[\mathbf{X}] \operatorname{E}\left[\mathbf{X}^\mathrm{T}\right]\mathbf{A}^\mathrm{T} \\ &= \mathbf{A}\left(\operatorname{E}\left[\mathbf{XX}^\mathrm{T}\right] - \operatorname{E}[\mathbf{X}] \operatorname{E}\left[\mathbf{X}^\mathrm{T}\right]\right)\mathbf{A}^\mathrm{T} \\ &= \mathbf{A}\Sigma\mathbf{A}^\mathrm{T}. \end{align}</math> This is a direct result of the linearity of [[expected value|expectation]] and is useful when applying a [[linear transformation]], such as a [[whitening transformation]], to a vector.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)