Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirac delta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Properties in ''n'' dimensions=== The delta distribution in an {{mvar|n}}-dimensional space satisfies the following scaling property instead, <math display="block">\delta(\alpha\boldsymbol{x}) = |\alpha|^{-n}\delta(\boldsymbol{x}) ~,</math> so that {{mvar|δ}} is a [[homogeneous function|homogeneous]] distribution of degree {{math|−''n''}}. Under any [[reflection (mathematics)|reflection]] or [[rotation (mathematics)|rotation]] {{mvar|ρ}}, the delta function is invariant, <math display="block">\delta(\rho \boldsymbol{x}) = \delta(\boldsymbol{x})~.</math> As in the one-variable case, it is possible to define the composition of {{mvar|δ}} with a [[Lipschitz function|bi-Lipschitz function]]<ref>Further refinement is possible, namely to [[submersion (mathematics)|submersions]], although these require a more involved change of variables formula.</ref> {{math|''g'': '''R'''<sup>''n''</sup> → '''R'''<sup>''n''</sup>}} uniquely so that the following holds <math display="block">\int_{\R^n} \delta(g(\boldsymbol{x}))\, f(g(\boldsymbol{x}))\left|\det g'(\boldsymbol{x})\right| d\boldsymbol{x} = \int_{g(\R^n)} \delta(\boldsymbol{u}) f(\boldsymbol{u})\,d\boldsymbol{u}</math> for all compactly supported functions {{mvar|f}}. Using the [[coarea formula]] from [[geometric measure theory]], one can also define the composition of the delta function with a [[submersion (mathematics)|submersion]] from one Euclidean space to another one of different dimension; the result is a type of [[current (mathematics)|current]]. In the special case of a continuously differentiable function {{math|''g'' : '''R'''<sup>''n''</sup> → '''R'''}} such that the [[gradient]] of {{mvar|g}} is nowhere zero, the following identity holds{{sfn|Hörmander|1983|loc=§6.1}} <math display="block">\int_{\R^n} f(\boldsymbol{x}) \, \delta(g(\boldsymbol{x})) \,d\boldsymbol{x} = \int_{g^{-1}(0)}\frac{f(\boldsymbol{x})}{|\boldsymbol{\nabla}g|}\,d\sigma(\boldsymbol{x}) </math> where the integral on the right is over {{math|''g''<sup>−1</sup>(0)}}, the {{math|(''n'' − 1)}}-dimensional surface defined by {{math|1=''g''('''x''') = 0}} with respect to the [[Minkowski content]] measure. This is known as a ''simple layer'' integral. More generally, if {{mvar|S}} is a smooth hypersurface of {{math|'''R'''<sup>''n''</sup>}}, then we can associate to {{mvar|S}} the distribution that integrates any compactly supported smooth function {{mvar|g}} over {{mvar|S}}: <math display="block">\delta_S[g] = \int_S g(\boldsymbol{s})\,d\sigma(\boldsymbol{s})</math> where {{mvar|σ}} is the hypersurface measure associated to {{mvar|S}}. This generalization is associated with the [[potential theory]] of [[simple layer potential]]s on {{mvar|S}}. If {{mvar|D}} is a [[domain (mathematical analysis)|domain]] in {{math|'''R'''<sup>''n''</sup>}} with smooth boundary {{mvar|S}}, then {{math|''δ''<sub>''S''</sub>}} is equal to the [[normal derivative]] of the [[indicator function]] of {{mvar|D}} in the distribution sense, <math display="block">-\int_{\R^n}g(\boldsymbol{x})\,\frac{\partial 1_D(\boldsymbol{x})}{\partial n}\,d\boldsymbol{x}=\int_S\,g(\boldsymbol{s})\, d\sigma(\boldsymbol{s}),</math> where {{mvar|n}} is the outward normal.{{sfn|Lange|2012|loc=pp.29–30}}{{sfn|Gelfand|Shilov|1966–1968|p=212}} For a proof, see e.g. the article on the [[surface delta function]]. In three dimensions, the delta function is represented in spherical coordinates by: <math display="block">\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \begin{cases} \displaystyle\frac{1}{r^2\sin\theta}\delta(r-r_0) \delta(\theta-\theta_0)\delta(\phi-\phi_0)& x_0,y_0,z_0 \ne 0 \\ \displaystyle\frac{1}{2\pi r^2\sin\theta}\delta(r-r_0) \delta(\theta-\theta_0)& x_0=y_0=0,\ z_0 \ne 0 \\ \displaystyle\frac{1}{4\pi r^2}\delta(r-r_0) & x_0=y_0=z_0 = 0 \end{cases}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)