Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Discrete Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Uniqueness of the Discrete Fourier Transform === As seen above, the discrete Fourier transform has the fundamental property of carrying convolution into componentwise product. A natural question is whether it is the only one with this ability. It has been shown <ref>{{cite book |last1=Amiot |first1=Emmanuel |title=Music through Fourier Space |series=Computational Music Science |date=2016 |publisher=Springer |location=Zürich |isbn=978-3-319-45581-5 |page=8 |doi=10.1007/978-3-319-45581-5 |s2cid=6224021 |url=https://link.springer.com/book/10.1007/978-3-319-45581-5 |ref=Theorem 1.11}}</ref><ref name=Baraquin/> that any linear transform that turns convolution into pointwise product is the DFT up to a permutation of coefficients. Since the number of permutations of n elements equals n!, there exists exactly n! linear and invertible maps with the same fundamental property as the DFT with respect to convolution.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)