Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Double factorial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Exact finite sums involving multiple factorial functions=== Suppose that {{math|''n'' ≥ 1}} and {{math|''α'' ≥ 2}} are integer-valued. Then we can expand the next single finite sums involving the multifactorial, or {{mvar|α}}-factorial functions, {{math|(''αn'' − 1)!<sub>(''α'')</sub>}}, in terms of the [[Pochhammer symbol]] and the generalized, rational-valued [[binomial coefficients]] as <math display="block"> \begin{align} (\alpha n-1)!_{(\alpha)} & = \sum_{k=0}^{n-1} \binom{n-1}{k+1} (-1)^k \times \left(\frac{1}{\alpha}\right)_{-(k+1)} \left(\frac{1}{\alpha}-n\right)_{k+1} \times \bigl(\alpha(k+1)-1\bigr)!_{(\alpha)} \bigl(\alpha(n-k-1)-1\bigr)!_{(\alpha)} \\ & = \sum_{k=0}^{n-1} \binom{n-1}{k+1} (-1)^k \times \binom{\frac{1}{\alpha}+k-n}{k+1} \binom{\frac{1}{\alpha}-1}{k+1} \times \bigl(\alpha(k+1)-1\bigr)!_{(\alpha)} \bigl(\alpha(n-k-1)-1\bigr)!_{(\alpha)}\,, \end{align} </math> and moreover, we similarly have double sum expansions of these functions given by <math display="block"> \begin{align} (\alpha n-1)!_{(\alpha)} & = \sum_{k=0}^{n-1} \sum_{i=0}^{k+1} \binom{n-1}{k+1} \binom{k+1}{i} (-1)^k \alpha^{k+1-i} (\alpha i-1)!_{(\alpha)} \bigl(\alpha(n-1-k)-1\bigr)!_{(\alpha)} \times (n-1-k)_{k+1-i} \\ & = \sum_{k=0}^{n-1} \sum_{i=0}^{k+1} \binom{n-1}{k+1} \binom{k+1}{i} \binom{n-1-i}{k+1-i} (-1)^k \alpha^{k+1-i} (\alpha i-1)!_{(\alpha)} \bigl(\alpha(n-1-k)-1\bigr)!_{(\alpha)} \times (k+1-i)!. \end{align} </math> The first two sums above are similar in form to a known ''non-round'' combinatorial identity for the double factorial function when {{math|1=''α'' := 2}} given by {{harvtxt|Callan|2009}}. <math display="block">(2n-1)!! = \sum_{k=0}^{n-1} \binom{n}{k+1} (2k-1)!! (2n-2k-3)!!.</math> Similar identities can be obtained via context-free grammars.<ref>{{Cite journal|last1=Triana |first1=Juan |last2=De Castro |first2=Rodrigo |year=2019 |title=The formal derivative operator and multifactorial numbers|journal=Revista Colombiana de Matemáticas|volume=53 |issue=2 |pages=125–137 |doi=10.15446/recolma.v53n2.85522 |issn=0034-7426 |doi-access=free }}</ref> Additional finite sum expansions of congruences for the {{mvar|α}}-factorial functions, {{math|(''αn'' − ''d'')!<sub>(''α'')</sub>}}, modulo any prescribed integer {{math|''h'' ≥ 2}} for any {{math|0 ≤ ''d'' < ''α''}} are given by {{harvtxt|Schmidt|2018}}.<ref>{{cite journal | last = Schmidt | first = Maxie D. | arxiv = 1701.04741 | journal = Integers | mr = 3862591 | pages = A78:1–A78:34 | title = New congruences and finite difference equations for generalized factorial functions | url = https://math.colgate.edu/~integers/s78/s78.pdf | volume = 18 | year = 2018}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)