Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exponential distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Distribution of the minimum of exponential random variables=== Let ''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub> be [[Independent random variables|independent]] exponentially distributed random variables with rate parameters ''Ξ»''<sub>1</sub>, ..., ''Ξ»<sub>n</sub>''. Then <math display="block">\min\left\{X_1, \dotsc, X_n \right\}</math> is also exponentially distributed, with parameter <math display="block">\lambda = \lambda_1 + \dotsb + \lambda_n.</math> This can be seen by considering the [[complementary cumulative distribution function]]: <math display="block">\begin{align} &\Pr\left(\min\{X_1, \dotsc, X_n\} > x\right) \\ ={} &\Pr\left(X_1 > x, \dotsc, X_n > x\right) \\ ={} &\prod_{i=1}^n \Pr\left(X_i > x\right) \\ ={} &\prod_{i=1}^n \exp\left(-x\lambda_i\right) = \exp\left(-x\sum_{i=1}^n \lambda_i\right). \end{align}</math> The index of the variable which achieves the minimum is distributed according to the categorical distribution <math display="block">\Pr\left(X_k = \min\{X_1, \dotsc, X_n\}\right) = \frac{\lambda_k}{\lambda_1 + \dotsb + \lambda_n}.</math> A proof can be seen by letting <math>I = \operatorname{argmin}_{i \in \{1, \dotsb, n\}}\{X_1, \dotsc, X_n\}</math>. Then, <math display="block">\begin{align} \Pr (I = k) &= \int_{0}^{\infty} \Pr(X_k = x) \Pr(\forall_{i\neq k}X_{i} > x ) \,dx \\ &= \int_{0}^{\infty} \lambda_k e^{- \lambda_k x} \left(\prod_{i=1, i\neq k}^{n} e^{- \lambda_i x}\right) dx \\ &= \lambda_k \int_{0}^{\infty} e^{- \left(\lambda_1 + \dotsb +\lambda_n\right) x} dx \\ &= \frac{\lambda_k}{\lambda_1 + \dotsb + \lambda_n}. \end{align}</math> Note that <math display="block">\max\{X_1, \dotsc, X_n\}</math> is not exponentially distributed, if ''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub> do not all have parameter 0.<ref>{{cite web|last1=Michael|first1=Lugo|title=The expectation of the maximum of exponentials| url=http://www.stat.berkeley.edu/~mlugo/stat134-f11/exponential-maximum.pdf|access-date=13 December 2016|archive-url=https://web.archive.org/web/20161220132822/https://www.stat.berkeley.edu/~mlugo/stat134-f11/exponential-maximum.pdf |archive-date=20 December 2016|url-status=dead}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)