Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fermat number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Generalized Fermat primes of the form F<sub>''n''</sub>(''a'')=== Because of the ease of proving their primality, generalized Fermat primes have become in recent years a topic for research within the field of number theory. Many of the largest known primes today are generalized Fermat primes. Generalized Fermat numbers can be prime only for [[even number|even]] {{mvar|a}}, because if {{mvar|a}} is [[odd number|odd]] then every generalized Fermat number will be divisible by 2. The smallest prime number <math>F_n(a)</math> with <math>n>4</math> is <math>F_5(30)</math>, or 30<sup>32</sup> + 1. Besides, we can define "half generalized Fermat numbers" for an odd base, a half generalized Fermat number to base ''a'' (for odd ''a'') is <math>\frac{a^{2^n} \!+ 1}{2}</math>, and it is also to be expected that there will be only finitely many half generalized Fermat primes for each odd base. In this list, the generalized Fermat numbers (<math>F_n(a)</math>) to an even {{mvar|a}} are <math>a^{2^n} \!+ 1</math>, for odd {{mvar|a}}, they are <math>\frac{a^{2^n} \!\!+ 1}{2}</math>. If {{mvar|a}} is a [[perfect power]] with an odd exponent {{OEIS|id=A070265}}, then all generalized Fermat number can be algebraic factored, so they cannot be prime. See<ref>{{cite web|url=http://jeppesn.dk/generalized-fermat.html|title=Generalized Fermat Primes|website=jeppesn.dk|access-date=7 April 2018}}</ref><ref>{{cite web|url=http://www.noprimeleftbehind.net/crus/GFN-primes.htm|title=Generalized Fermat primes for bases up to 1030|website=noprimeleftbehind.net|access-date=7 April 2018}}</ref> for even bases up to 1000, and<ref>{{cite web|url=http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt|title=Generalized Fermat primes in odd bases|website=fermatquotient.com|access-date=7 April 2018}}</ref> for odd bases. For the smallest number <math>n</math> such that <math>F_n(a)</math> is prime, see {{oeis|id=A253242}}. {|class="wikitable" !<math>a</math> !numbers <math>n</math><br/>such that<br/><math>F_n(a)</math> is prime !<math>a</math> !numbers <math>n</math><br/>such that<br/><math>F_n(a)</math> is prime !<math>a</math> !numbers <math>n</math><br/>such that<br/><math>F_n(a)</math> is prime !<math>a</math> !numbers <math>n</math><br/>such that<br/><math>F_n(a)</math> is prime |- |2 |0, 1, 2, 3, 4, ... |18 |0, ... |34 |2, ... |50 |... |- |3 |0, 1, 2, 4, 5, 6, ... |19 |1, ... |35 |1, 2, 6, ... |51 |1, 3, 6, ... |- |4 |0, 1, 2, 3, ... |20 |1, 2, ... |36 |0, 1, ... |52 |0, ... |- |5 |0, 1, 2, ... |21 |0, 2, 5, ... |37 |0, ... |53 |3, ... |- |6 |0, 1, 2, ... |22 |0, ... |38 |... |54 |1, 2, 5, ... |- |7 |2, ... |23 |2, ... |39 |1, 2, ... |55 |... |- |8 | {{CNone|(none)}} |24 |1, 2, ... |40 |0, 1, ... |56 |1, 2, ... |- |9 |0, 1, 3, 4, 5, ... |25 |0, 1, ... |41 |4, ... |57 |0, 2, ... |- |10 |0, 1, ... |26 |1, ... |42 |0, ... |58 |0, ... |- |11 |1, 2, ... |27 | {{CNone|(none)}} |43 |3, ... |59 |1, ... |- |12 |0, ... |28 |0, 2, ... |44 |4, ... |60 |0, ... |- |13 |0, 2, 3, ... |29 |1, 2, 4, ... |45 |0, 1, ... |61 |0, 1, 2, ... |- |14 |1, ... |30 |0, 5, ... |46 |0, 2, 9, ... |62 |... |- |15 |1, ... |31 |... |47 |3, ... |63 |... |- |16 |0, 1, 2, ... |32 | {{CNone|(none)}} |48 |2, ... |64 | {{CNone|(none)}} |- |17 |2, ... |33 |0, 3, ... |49 |1, ... |65 |1, 2, 5, ... |} For the smallest even base {{mvar|a}} such that <math>F_n(a)</math> is prime, see {{oeis|id=A056993}}. The generalized Fermat prime ''F''<sub>14</sub>(71) is the largest known generalized Fermat prime in bases ''b'' β€ 1000, it is proven prime by [[elliptic curve primality proving]].<ref>[https://factordb.com/index.php?id=1100000000213085670 The entry of the generalized Fermat prime ''F''<sub>14</sub>(71) in the online factor database]</ref> {|class="wikitable" !<math>n</math> !bases {{mvar|a}} such that <math>F_n(a)</math> is prime (only consider even {{mvar|a}}) ![[OEIS]] sequence |- |0 |2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, ... |{{OEIS link|id=A006093}} |- |1 |2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40, 54, 56, 66, 74, 84, 90, 94, 110, 116, 120, 124, 126, 130, 134, 146, 150, 156, 160, 170, 176, 180, 184, ... |{{OEIS link|id=A005574}} |- |2 |2, 4, 6, 16, 20, 24, 28, 34, 46, 48, 54, 56, 74, 80, 82, 88, 90, 106, 118, 132, 140, 142, 154, 160, 164, 174, 180, 194, 198, 204, 210, 220, 228, ... |{{OEIS link|id=A000068}} |- |3 |2, 4, 118, 132, 140, 152, 208, 240, 242, 288, 290, 306, 378, 392, 426, 434, 442, 508, 510, 540, 542, 562, 596, 610, 664, 680, 682, 732, 782, ... |{{OEIS link|id=A006314}} |- |4 |2, 44, 74, 76, 94, 156, 158, 176, 188, 198, 248, 288, 306, 318, 330, 348, 370, 382, 396, 452, 456, 470, 474, 476, 478, 560, 568, 598, 642, ... |{{OEIS link|id=A006313}} |- |5 |30, 54, 96, 112, 114, 132, 156, 332, 342, 360, 376, 428, 430, 432, 448, 562, 588, 726, 738, 804, 850, 884, 1068, 1142, 1198, 1306, 1540, 1568, ... |{{OEIS link|id=A006315}} |- |6 |102, 162, 274, 300, 412, 562, 592, 728, 1084, 1094, 1108, 1120, 1200, 1558, 1566, 1630, 1804, 1876, 2094, 2162, 2164, 2238, 2336, 2388, ... |{{OEIS link|id=A006316}} |- |7 |120, 190, 234, 506, 532, 548, 960, 1738, 1786, 2884, 3000, 3420, 3476, 3658, 4258, 5788, 6080, 6562, 6750, 7692, 8296, 9108, 9356, 9582, ... |{{OEIS link|id=A056994}} |- |8 |278, 614, 892, 898, 1348, 1494, 1574, 1938, 2116, 2122, 2278, 2762, 3434, 4094, 4204, 4728, 5712, 5744, 6066, 6508, 6930, 7022, 7332, ... |{{OEIS link|id=A056995}} |- |9 |46, 1036, 1318, 1342, 2472, 2926, 3154, 3878, 4386, 4464, 4474, 4482, 4616, 4688, 5374, 5698, 5716, 5770, 6268, 6386, 6682, 7388, 7992, ... |{{OEIS link|id=A057465}} |- |10 |824, 1476, 1632, 2462, 2484, 2520, 3064, 3402, 3820, 4026, 6640, 7026, 7158, 9070, 12202, 12548, 12994, 13042, 15358, 17646, 17670, ... |{{OEIS link|id=A057002}} |- |11 |150, 2558, 4650, 4772, 11272, 13236, 15048, 23302, 26946, 29504, 31614, 33308, 35054, 36702, 37062, 39020, 39056, 43738, 44174, 45654, ... |{{OEIS link|id=A088361}} |- |12 |1534, 7316, 17582, 18224, 28234, 34954, 41336, 48824, 51558, 51914, 57394, 61686, 62060, 89762, 96632, 98242, 100540, 101578, 109696, ... |{{OEIS link|id=A088362}} |- |13 |30406, 71852, 85654, 111850, 126308, 134492, 144642, 147942, 150152, 165894, 176206, 180924, 201170, 212724, 222764, 225174, 241600, ... |{{OEIS link|id=A226528}} |- |14 |67234, 101830, 114024, 133858, 162192, 165306, 210714, 216968, 229310, 232798, 422666, 426690, 449732, 462470, 468144, 498904, 506664, ... |{{OEIS link|id=A226529}} |- |15 |70906, 167176, 204462, 249830, 321164, 330716, 332554, 429370, 499310, 524552, 553602, 743788, 825324, 831648, 855124, 999236, 1041870, 1074542, 1096382, 1113768, 1161054, 1167528, 1169486, 1171824, 1210354, 1217284, 1277444, 1519380, 1755378, 1909372, 1922592, 1986700, ... |{{OEIS link|id=A226530}} |- |16 |48594, 108368, 141146, 189590, 255694, 291726, 292550, 357868, 440846, 544118, 549868, 671600, 843832, 857678, 1024390, 1057476, 1087540, 1266062, 1361846, 1374038, 1478036, 1483076, 1540550, 1828502, 1874512, 1927034, 1966374, ... |{{OEIS link|id=A251597}} |- |17 |62722, 130816, 228188, 386892, 572186, 689186, 909548, 1063730, 1176694, 1361244, 1372930, 1560730, 1660830, 1717162, 1722230, 1766192, 1955556, 2194180, 2280466, 2639850, 3450080, 3615210, 3814944, 4085818, 4329134, 4893072, 4974408, ... |{{OEIS link|id=A253854}} |- |18 |24518, 40734, 145310, 361658, 525094, 676754, 773620, 1415198, 1488256, 1615588, 1828858, 2042774, 2514168, 2611294, 2676404, 3060772, 3547726, 3596074, 3673932, 3853792, 3933508, 4246258, 4489246, ... |{{OEIS link|id=A244150}} |- |19 |75898, 341112, 356926, 475856, 1880370, 2061748, 2312092, 2733014, 2788032, 2877652, 2985036, 3214654, 3638450, 4896418, 5897794, 6339004, 8630170, 9332124, 10913140, 11937916, 12693488, 12900356, ... |{{OEIS link|id=A243959}} |- |20 |919444, 1059094, 1951734, 1963736, 3843236, ... |{{OEIS link|id=A321323}} |} The smallest even base ''b'' such that ''F''<sub>''n''</sub>(''b'') = ''b''<sup>2<sup>''n''</sup></sup> + 1 (for given ''n'' = 0, 1, 2, ...) is prime are :2, 2, 2, 2, 2, 30, 102, 120, 278, 46, 824, 150, 1534, 30406, 67234, 70906, 48594, 62722, 24518, 75898, 919444, ... {{OEIS|id=A056993}} The smallest odd base ''b'' such that ''F''<sub>''n''</sub>(''b'') = (''b''<sup>2<sup>''n''</sup></sup> + 1)/2 (for given ''n'' = 0, 1, 2, ...) is prime (or [[probable prime]]) are :3, 3, 3, 9, 3, 3, 3, 113, 331, 513, 827, 799, 3291, 5041, 71, 220221, 23891, 11559, 187503, 35963, ... {{OEIS|id=A275530}} Conversely, the smallest ''k'' such that (2''n'')<sup>''k''</sup> + 1 (for given ''n'') is prime are :1, 1, 1, 0, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 0, 4, 1, ... (The next term is unknown) {{OEIS|id=A079706}} (also see {{oeis|id=A228101}} and {{oeis|id=A084712}}) A more elaborate theory can be used to predict the number of bases for which <math>F_n(a)</math> will be prime for fixed <math>n</math>. The number of generalized Fermat primes can be roughly expected to halve as <math>n</math> is increased by 1.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)