Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fractional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Other types === Classical fractional derivatives include: * [[Grünwald–Letnikov derivative]]<ref name=deOliveira2014>{{cite journal |last1=de Oliveira |first1=Edmundo Capelas |last2=Tenreiro Machado |first2=José António |date=2014-06-10 |title=A Review of Definitions for Fractional Derivatives and Integral |journal=Mathematical Problems in Engineering |volume=2014 |pages=1–6 |language=en |doi=10.1155/2014/238459 |doi-access=free|hdl=10400.22/5497 |hdl-access=free }}</ref><ref name=Aslan2015>{{cite journal |last=Aslan |first=İsmail |date=2015-01-15 |title=An analytic approach to a class of fractional differential-difference equations of rational type via symbolic computation |journal=Mathematical Methods in the Applied Sciences |language=en |volume=38 |issue=1 |pages=27–36 |doi=10.1002/mma.3047 |bibcode=2015MMAS...38...27A |hdl=11147/5562 |s2cid=120881978 |hdl-access=free}}</ref> * Sonin–Letnikov derivative<ref name=Aslan2015/> * Liouville derivative<ref name=deOliveira2014/> * [[Differintegral|Caputo derivative]]<ref name=deOliveira2014/> * Hadamard derivative<ref name=deOliveira2014/><ref>{{cite journal |last1=Ma |first1=Li |last2=Li |first2=Changpin |date=2017-05-11 |title=On hadamard fractional calculus |journal=Fractals |volume=25 |issue=3 |pages=1750033–2980 |doi=10.1142/S0218348X17500335 |bibcode=2017Fract..2550033M |issn=0218-348X}}</ref> * Marchaud derivative<ref name=deOliveira2014/> * Riesz derivative<ref name=Aslan2015/> * Miller–Ross derivative<ref name=deOliveira2014/> * [[Weyl integral|Weyl derivative]]<ref>{{cite book |last=Miller |first=Kenneth S. |chapter=The Weyl fractional calculus |date=1975 |title=Fractional Calculus and Its Applications: Proceedings of the International Conference Held at the University of New Haven, June 1974 |pages=80–89 |editor-last=Ross |editor-first=Bertram |series=Lecture Notes in Mathematics |volume=457 |publisher=Springer |language=en |doi=10.1007/bfb0067098 |isbn=978-3-540-69975-0}}</ref><ref>{{cite journal |last=Ferrari |first=Fausto |date=January 2018 |title=Weyl and Marchaud Derivatives: A Forgotten History |journal=Mathematics |language=en |volume=6 |issue=1 |pages=6 |doi=10.3390/math6010006 |doi-access=free|arxiv=1711.08070 }}</ref><ref name=deOliveira2014/> * [[Erdelyi–Kober operator|Erdélyi–Kober derivative]]<ref name=deOliveira2014/> * [[Fractal calculus|<math>F^{\alpha}</math>-derivative]]<ref name="Ali">{{cite book |last= Khalili Golmankhaneh|first= Alireza |date=2022 |title=Fractal Calculus and its Applications |url=https://worldscientific.com/worldscibooks/10.1142/12988#t=aboutBook|location=Singapore |publisher= World Scientific Pub Co Inc|page=328 |doi= 10.1142/12988 |isbn=978-981-126-110-7 |s2cid= 248575991 }}</ref> New fractional derivatives include: * Coimbra derivative<ref name=deOliveira2014/> * [[Katugampola fractional operators|Katugampola derivative]]<ref>{{cite journal |last1=Anderson |first1=Douglas R. |last2=Ulness |first2=Darin J. |date=2015-06-01 |title=Properties of the Katugampola fractional derivative with potential application in quantum mechanics |journal=Journal of Mathematical Physics |volume=56 |issue=6 |pages=063502 |doi=10.1063/1.4922018 |bibcode=2015JMP....56f3502A |issn=0022-2488}}</ref> * Hilfer derivative<ref name=deOliveira2014/> * Davidson derivative<ref name=deOliveira2014/> * Chen derivative<ref name=deOliveira2014/> * [[Caputo Fabrizio derivative]]<ref name=Algahtani2016>{{cite journal |last=Algahtani |first=Obaid Jefain Julaighim |date=2016-08-01 |title=Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model |url=https://www.sciencedirect.com/science/article/abs/pii/S0960077916301059 |journal=Chaos, Solitons & Fractals |series=Nonlinear Dynamics and Complexity |language=en |volume=89 |pages=552–559 |doi=10.1016/j.chaos.2016.03.026 |bibcode=2016CSF....89..552A |issn=0960-0779}}</ref><ref>{{cite journal |last1=Caputo |first1=Michele |last2=Fabrizio |first2=Mauro |date=2016-01-01 |title=Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels |journal=Progress in Fractional Differentiation and Applications |volume=2 |issue=1 |pages=1–11 |doi=10.18576/pfda/020101 |issn=2356-9336}}</ref> * Atangana–Baleanu derivative<ref name=Algahtani2016/><ref name="doiserbia.nb.rs"/> ====Coimbra derivative==== The '''Coimbra derivative''' is used for physical modeling:<ref> C. F. M. Coimbra (2003) "Mechanics with Variable Order Differential Equations," Annalen der Physik (12), No. 11-12, pp. 692-703.</ref> A number of applications in both mechanics and optics can be found in the works by Coimbra and collaborators,<ref>L. E. S. Ramirez, and C. F. M. Coimbra (2007) "A Variable Order Constitutive Relation for Viscoelasticity"– Annalen der Physik (16) 7-8, pp. 543-552.</ref><ref>H. T. C. Pedro, M. H. Kobayashi, J. M. C. Pereira, and C. F. M. Coimbra (2008) "Variable Order Modeling of Diffusive-Convective Effects on the Oscillatory Flow Past a Sphere" – Journal of Vibration and Control, (14) 9-10, pp. 1569-1672.</ref><ref>G. Diaz, and C. F. M. Coimbra (2009) "Nonlinear Dynamics and Control of a Variable Order Oscillator with Application to the van der Pol Equation" – Nonlinear Dynamics, 56, pp. 145—157.</ref><ref>L. E. S. Ramirez, and C. F. M. Coimbra (2010) "On the Selection and Meaning of Variable Order Operators for Dynamic Modeling"– International Journal of Differential Equations Vol. 2010, Article ID 846107.</ref><ref> L. E. S. Ramirez and C. F. M. Coimbra (2011) "On the Variable Order Dynamics of the Nonlinear Wake Caused by a Sedimenting Particle," Physica D (240) 13, pp. 1111-1118.</ref><ref>E. A. Lim, M. H. Kobayashi and C. F. M. Coimbra (2014) "Fractional Dynamics of Tethered Particles in Oscillatory Stokes Flows," Journal of Fluid Mechanics (746) pp. 606-625.</ref><ref>J. Orosco and C. F. M. Coimbra (2016) "On the Control and Stability of Variable Order Mechanical Systems" Nonlinear Dynamics, (86:1), pp. 695–710.</ref> as well as additional applications to physical problems and numerical implementations studied in a number of works by other authors<ref>E. C. de Oliveira, J. A. Tenreiro Machado (2014), "A Review of Definitions for Fractional Derivatives and Integral", Mathematical Problems in Engineering, vol. 2014, Article ID 238459.</ref><ref>S. Shen, F. Liu, J. Chen, I. Turner, and V. Anh (2012) "Numerical techniques for the variable order time fractional diffusion equation" Applied Mathematics and Computation Volume 218, Issue 22, pp. 10861-10870.</ref><ref>H. Zhang and S. Shen, "The Numerical Simulation of Space-Time Variable Fractional Order Diffusion Equation," Numer. Math. Theor. Meth. Appl. Vol. 6, No. 4, pp. 571-585.</ref><ref>H. Zhang, F. Liu, M. S. Phanikumar, and M. M. Meerschaert (2013) "A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model," Computers & Mathematics with Applications, 66, issue 5, pp. 693–701.</ref> For <math>q(t) < 1 </math> <math display="block"> \begin{align} ^{\mathbb{C}}_{ a}\mathbb{D}^{q(t)} f(t)=\frac{1}{\Gamma[1-q(t)]} \int_{0^+}^t (t-\tau)^{-q(t)}\frac{d\,f(\tau)}{d\tau}d\tau\,+\,\frac{(f(0^+)-f(0^-))\,t^{-q(t)}}{\Gamma(1-q(t))}, \end{align}</math> where the lower limit <math>a</math> can be taken as either <math>0^-</math> or <math>-\infty</math> as long as <math>f(t)</math> is identically zero from or <math>-\infty</math> to <math>0^-</math>. Note that this operator returns the correct fractional derivatives for all values of <math>t</math> and can be applied to either the dependent function itself <math> f(t)</math> with a variable order of the form <math>q(f(t))</math> or to the independent variable with a variable order of the form <math>q(t)</math>.<math>^{[1]}</math> The Coimbra derivative can be generalized to any order,<ref> C. F. M. Coimbra "Methods of using generalized order differentiation and integration of input variables to forecast trends," U.S. Patent Application 13,641,083 (2013). </ref> leading to the Coimbra Generalized Order Differintegration Operator (GODO)<ref>J. Orosco and C. F. M. Coimbra (2018) "Variable-order Modeling of Nonlocal Emergence in Many-body Systems: Application to Radiative Dispersion," Physical Review E (98), 032208.</ref> For <math>q(t) < m </math> <math display="block"> \begin{align} ^{\mathbb{\quad C}}_{\,\,-\infty}\mathbb{D}^{q(t)} f(t)=\frac{1}{\Gamma[ m-q(t)]} \int_{0^+}^t (t-\tau)^{m-1-q(t)}\frac{d^m f(\tau)}{d\tau^m}d\tau\,+\,\sum^{m-1}_{n = 0} \frac{(\frac{d^n f(t)}{dt^n }|_{0^+}-\frac{d^n f(t)}{dt^n}|_{0^-})\,t^{n -q(t)}}{\Gamma[n+1-q(t)]}, \end{align}</math> where <math>m</math> is an integer larger than the larger value of <math>q(t)</math> for all values of <math>t</math>. Note that the second (summation) term on the right side of the definition above can be expressed as <math display="block"> \begin{align} \frac{1}{\Gamma[m-q(t)]}\sum^{m-1}_{n = 0} \{[\frac{d^n\!f(t)}{dt^n}|_{0^+}-\frac{d^n\!f(t)}{dt^n }|_{0^-}]\,t^{n -q(t)} \prod^{m-1}_{j=n+1} [j- q(t)]\} \end{align}</math> so to keep the denominator on the positive branch of the Gamma (<math>\Gamma</math>) function and for ease of numerical calculation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)