Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Minima and maxima === On the real line, the gamma function has a local minimum at {{math|''z''<sub>min</sub> β {{gaps|+1.46163|21449|68362|34126}}}}<ref>{{Cite OEIS|A030169|2=Decimal expansion of real number x such that y = Gamma(x) is a minimum}}</ref> where it attains the value {{math|Ξ(''z''<sub>min</sub>) β {{gaps|+0.88560|31944|10888|70027}}}}.<ref>{{Cite OEIS|A030171|2=Decimal expansion of real number y such that y = Gamma(x) is a minimum}}</ref> The gamma function rises to either side of this minimum. The solution to {{math|1=Ξ(''z'' β 0.5) = Ξ(''z'' + 0.5)}} is {{math|1=''z'' = +1.5}} and the common value is {{math|1=Ξ(1) = Ξ(2) = +1}}. The positive solution to {{math|1=Ξ(''z'' β 1) = Ξ(''z'' + 1)}} is {{math|1=''z'' = ''Ο'' β +1.618}}, the [[golden ratio]], and the common value is {{math|1=Ξ(''Ο'' β 1) = Ξ(''Ο'' + 1) = ''Ο''! β {{gaps|+1.44922|96022|69896|60037}}}}.<ref>{{Cite OEIS|A178840|Decimal expansion of the factorial of Golden Ratio}}</ref> The gamma function must alternate sign between its poles at the non-positive integers because the product in the forward recurrence contains an odd number of negative factors if the number of poles between <math>z</math> and <math>z + n</math> is odd, and an even number if the number of poles is even.<ref name="Mathworld" /> The values at the local extrema of the gamma function along the real axis between the non-positive integers are: : {{math|1=Ξ({{gaps|β0.50408|30082|64455|40925...}}<ref>{{Cite OEIS|A175472|Decimal expansion of the absolute value of the abscissa of the local maximum of the Gamma function in the interval [ -1,0]}}</ref>) = {{gaps|β3.54464|36111|55005|08912...}}}}, : {{math|1=Ξ({{gaps|β1.57349|84731|62390|45877...}}<ref>{{Cite OEIS|A175473|Decimal expansion of the absolute value of the abscissa of the local minimum of the Gamma function in the interval [ -2,-1]}}</ref>) = {{gaps|2.30240|72583|39680|13582...}}}}, : {{math|1=Ξ({{gaps|β2.61072|08684|44144|65000...}}<ref>{{Cite OEIS|A175474|Decimal expansion of the absolute value of the abscissa of the local maximum of the Gamma function in the interval [ -3,-2]}}</ref>) = {{gaps|β0.88813|63584|01241|92009...}}}}, : {{math|1=Ξ({{gaps|β3.63529|33664|36901|09783...}}<ref>{{Cite OEIS|A256681|Decimal expansion of the [negated] abscissa of the Gamma function local minimum in the interval [-4,-3]}}</ref>) = {{gaps|0.24512|75398|34366|25043...}}}}, : {{math|1=Ξ({{gaps|β4.65323|77617|43142|44171...}}<ref>{{Cite OEIS|A256682|Decimal expansion of the [negated] abscissa of the Gamma function local maximum in the interval [-5,-4]}}</ref>) = {{gaps|β0.05277|96395|87319|40076...}}}}, etc.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)