Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Other generating functions === Other sequences generated by more complex generating functions include: * Double exponential generating functions e.g. the [[Bell numbers#Generating function|Bell numbers]] * Hadamard products of generating functions and diagonal generating functions, and their corresponding [[generating function transformation#Hadamard products and diagonal generating functions|integral transformations]] ==== Convolution polynomials ==== Knuth's article titled "''Convolution Polynomials''"<ref>{{cite journal |last1=Knuth |first1=D. E. |date=1992 |title=Convolution Polynomials |journal=Mathematica J. |volume=2 |pages=67β78 |arxiv=math/9207221 |bibcode=1992math......7221K}}</ref> defines a generalized class of ''convolution polynomial'' sequences by their special generating functions of the form <math display="block">F(z)^x = \exp\bigl(x \log F(z)\bigr) = \sum_{n = 0}^\infty f_n(x) z^n,</math> for some analytic function {{mvar|F}} with a power series expansion such that {{math|''F''(0) {{=}} 1}}. We say that a family of polynomials, {{math|''f''<sub>0</sub>, ''f''<sub>1</sub>, ''f''<sub>2</sub>, ...}}, forms a ''convolution family'' if {{math|[[Degree of a polynomial|deg]] ''f<sub>n</sub>'' β€ ''n''}} and if the following convolution condition holds for all {{mvar|x}}, {{mvar|y}} and for all {{math|''n'' β₯ 0}}: <math display="block">f_n(x+y) = f_n(x) f_0(y) + f_{n-1}(x) f_1(y) + \cdots + f_1(x) f_{n-1}(y) + f_0(x) f_n(y). </math> We see that for non-identically zero convolution families, this definition is equivalent to requiring that the sequence have an ordinary generating function of the first form given above. A sequence of convolution polynomials defined in the notation above has the following properties: * The sequence {{math|''n''! Β· ''f<sub>n</sub>''(''x'')}} is of [[binomial type]] * Special values of the sequence include {{math|''f<sub>n</sub>''(1) {{=}} [''z<sup>n</sup>''] ''F''(''z'')}} and {{math|''f<sub>n</sub>''(0) {{=}} ''Ξ΄''<sub>''n'',0</sub>}}, and * For arbitrary (fixed) <math>x, y, t \isin \mathbb{C}</math>, these polynomials satisfy convolution formulas of the form <math display="block">\begin{align} f_n(x+y) & = \sum_{k=0}^n f_k(x) f_{n-k}(y) \\ f_n(2x) & = \sum_{k=0}^n f_k(x) f_{n-k}(x) \\ xn f_n(x+y) & = (x+y) \sum_{k=0}^n k f_k(x) f_{n-k}(y) \\ \frac{(x+y) f_n(x+y+tn)}{x+y+tn} & = \sum_{k=0}^n \frac{x f_k(x+tk)}{x+tk} \frac{y f_{n-k}(y+t(n-k))}{y+t(n-k)}. \end{align}</math> For a fixed non-zero parameter <math>t \isin \mathbb{C}</math>, we have modified generating functions for these convolution polynomial sequences given by <math display="block">\frac{z F_n(x+tn)}{(x+tn)} = \left[z^n\right] \mathcal{F}_t(z)^x, </math> where {{math|π<sub>''t''</sub>(''z'')}} is implicitly defined by a [[functional equation]] of the form {{math|π<sub>''t''</sub>(''z'') {{=}} ''F''(''x''π<sub>''t''</sub>(''z'')<sup>''t''</sup>)}}. Moreover, we can use matrix methods (as in the reference) to prove that given two convolution polynomial sequences, {{math|β¨ ''f<sub>n</sub>''(''x'') β©}} and {{math|β¨ ''g<sub>n</sub>''(''x'') β©}}, with respective corresponding generating functions, {{math|''F''(''z'')<sup>''x''</sup>}} and {{math|''G''(''z'')<sup>''x''</sup>}}, then for arbitrary {{mvar|t}} we have the identity <math display="block">\left[z^n\right] \left(G(z) F\left(z G(z)^t\right)\right)^x = \sum_{k=0}^n F_k(x) G_{n-k}(x+tk). </math> Examples of convolution polynomial sequences include the ''binomial power series'', {{math|π<sub>''t''</sub>(''z'') {{=}} 1 + ''z''π<sub>''t''</sub>(''z'')<sup>''t''</sup>}}, so-termed ''tree polynomials'', the [[Bell numbers]], {{math|''B''(''n'')}}, the [[Laguerre polynomials]], and the [[Stirling polynomial|Stirling convolution polynomials]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)