Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometric distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Related distributions== * The sum of <math>r</math> [[Statistical Independence|independent]] geometric random variables with parameter <math>p</math> is a [[Negative binomial distribution|negative binomial]] random variable with parameters <math>r</math> and <math>p</math>.<ref>{{Cite book |last=Pitman |first=Jim |url=http://link.springer.com/10.1007/978-1-4612-4374-8 |title=Probability |date=1993 |publisher=Springer New York |isbn=978-0-387-94594-1 |location=New York, NY |page=372 |language=en |doi=10.1007/978-1-4612-4374-8}}</ref> The geometric distribution is a special case of the negative binomial distribution, with <math>r=1</math>. *The geometric distribution is a special case of discrete [[compound Poisson distribution]].<ref name=":9" />{{Rp|page=606}} * The minimum of <math>n</math> geometric random variables with parameters <math>p_1, \dotsc, p_n</math> is also geometrically distributed with parameter <math>1 - \prod_{i=1}^n (1-p_i)</math>.<ref>{{cite journal |last1=Ciardo |first1=Gianfranco |last2=Leemis |first2=Lawrence M. |last3=Nicol |first3=David |date=1 June 1995 |title=On the minimum of independent geometrically distributed random variables |url=https://dx.doi.org/10.1016/0167-7152%2894%2900130-Z |journal=Statistics & Probability Letters |language=en |volume=23 |issue=4 |pages=313β326 |doi=10.1016/0167-7152(94)00130-Z |s2cid=1505801 |hdl-access=free |hdl=2060/19940028569}}</ref> * Suppose 0 < ''r'' < 1, and for ''k'' = 1, 2, 3, ... the random variable ''X''<sub>''k''</sub> has a [[Poisson distribution]] with expected value ''r''<sup>''k''</sup>/''k''. Then ::<math>\sum_{k=1}^\infty k\,X_k</math> :has a geometric distribution taking values in <math>\mathbb{N}_0</math>, with expected value ''r''/(1 − ''r'').{{citation needed|date=May 2012}} * The [[exponential distribution]] is the continuous analogue of the geometric distribution. Applying the [[Floor and ceiling functions|floor]] function to the exponential distribution with parameter <math>\lambda</math> creates a geometric distribution with parameter <math>p=1-e^{-\lambda}</math> defined over <math>\mathbb{N}_0</math>.<ref name=":2" />{{Rp|page=74}} This can be used to generate geometrically distributed random numbers as detailed in [[Geometric distribution#Random variate generation|Β§ Random variate generation]]. * If ''p'' = 1/''n'' and ''X'' is geometrically distributed with parameter ''p'', then the distribution of ''X''/''n'' approaches an [[exponential distribution]] with expected value 1 as ''n'' → ∞, since<math display="block"> \begin{align} \Pr(X/n>a)=\Pr(X>na) & = (1-p)^{na} = \left(1-\frac 1 n \right)^{na} = \left[ \left( 1-\frac 1 n \right)^n \right]^{a} \\ & \to [e^{-1}]^{a} = e^{-a} \text{ as } n\to\infty. \end{align} </math>More generally, if ''p'' = ''Ξ»''/''n'', where ''Ξ»'' is a parameter, then as ''n''→ ∞ the distribution of ''X''/''n'' approaches an exponential distribution with rate ''Ξ»'':<math>\Pr(X>nx)=\lim_{n \to \infty}(1-\lambda /n)^{nx}=e^{-\lambda x}</math> therefore the distribution function of ''X''/''n'' converges to <math>1-e^{-\lambda x}</math>, which is that of an exponential random variable.{{Cn|date=July 2024}} * The [[index of dispersion]] of the geometric distribution is <math>\frac{1}{p}</math> and its [[coefficient of variation]] is <math>\frac{1}{\sqrt{1-p}}</math>. The distribution is [[Overdispersion|overdispersed]].<ref name=":8" />{{Rp|page=216}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)