Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Green's function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Example== Find the Green function for the following problem, whose [[Green's function number]] is X11: <math display="block">\begin{align} Lu & = u'' + k^2 u = f(x) \\ u(0)& = 0, \quad u{\left(\tfrac{\pi}{2k}\right)} = 0. \end{align}</math> '''First step:''' The Green's function for the linear operator at hand is defined as the solution to {{NumBlk||<math display="block">G''(x,s) + k^2 G(x,s) = \delta(x-s). </math>|Eq. {{EquationRef|<nowiki>*</nowiki>}}}} If <math>x\ne s</math>, then the delta function gives zero, and the general solution is <math display="block">G(x,s)=c_1 \cos kx+c_2 \sin kx.</math> For <math>x < s</math>, the boundary condition at <math>x=0</math> implies <math display="block">G(0,s)=c_1 \cdot 1+c_2 \cdot 0=0, \quad c_1 = 0</math> if <math>x < s</math> and <math>s \ne \tfrac{\pi}{2k}</math>. For <math>x>s</math>, the boundary condition at <math>x = \tfrac{\pi}{2k}</math> implies <math display="block">G{\left(\tfrac{\pi}{2k},s\right)} = c_3 \cdot 0+c_4 \cdot 1=0, \quad c_4 = 0 </math> The equation of <math>G(0,s) = 0</math> is skipped for similar reasons. To summarize the results thus far: <math display="block">G(x,s) = \begin{cases} c_2 \sin kx, & \text{for } x < s, \\[0.4ex] c_3 \cos kx, & \text{for } s < x. \end{cases}</math> '''Second step:''' The next task is to determine <math>c_2</math> and {{Nowrap|<math>c_3</math>.}} Ensuring continuity in the Green's function at <math>x = s</math> implies <math display="block">c_2 \sin ks=c_3 \cos ks</math> One can ensure proper discontinuity in the first derivative by integrating the defining differential equation (i.e., {{EquationNote|*|Eq. *}}) from <math>x=s-\varepsilon</math> to <math>x=s+\varepsilon</math> and taking the limit as <math>\varepsilon</math> goes to zero. Note that we only integrate the second derivative as the remaining term will be continuous by construction. <math display="block">c_3 \cdot (-k \sin ks)-c_2 \cdot (k \cos ks)=1</math> The two (dis)continuity equations can be solved for <math>c_2</math> and <math>c_3</math> to obtain <math display="block">c_2 = -\frac{\cos ks}{k} \quad;\quad c_3 = -\frac{\sin ks}{k}</math> So Green's function for this problem is: <math display="block">G(x,s) = \begin{cases} -\frac{\cos ks}{k} \sin kx, & x<s, \\ -\frac{\sin ks}{k} \cos kx, & s<x. \end{cases}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)