Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hermite polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Other properties === The addition theorem, or the summation theorem, states that<ref name=":1">{{Cite web |title=DLMF: §18.18 Sums ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials |url=https://dlmf.nist.gov/18.18 |access-date=2025-03-18 |website=dlmf.nist.gov}}</ref><ref>{{Cite book |last1=Gradshteĭn |first1=I. S. |title=Table of integrals, series, and products |last2=Zwillinger |first2=Daniel |date=2015 |publisher=Elsevier, Academic Press is an imprint of Elsevier |isbn=978-0-12-384933-5 |edition=8 |location=Amsterdam ; Boston}}</ref>{{Pg|location=8.958}}<math display="block">\frac{\left(\sum_{k=1}^r a_k^2\right)^{\frac{n}{2}}}{n!} H_n\left(\frac{\sum_{k=1}^r a_k x_k}{\sqrt{\sum_{k=1}^r a_k^2}}\right)=\sum_{m_1+m_2+\ldots+m_r=n, m_i \geq 0} \prod_{k=1}^r\left\{\frac{a_k^{m_k}}{m_{k}!} H_{m_k}\left(x_k\right)\right\} </math>for any nonzero vector <math>a_{1:r}</math>. The multiplication theorem states that<ref name=":1" /><math display="block">H_{n}\left(\lambda x\right)=\lambda^{n}\sum_{\ell=0}^{\left\lfloor n/2\right\rfloor}\frac{{\left(-n\right)_{2\ell}}}{\ell!}(1-\lambda^{-2})^{\ell}H_{n-2\ell}\left(x\right)</math>for any nonzero <math>\lambda</math>. Feldheim formula<ref name=":2">Feldheim, Ervin. "Développements en série de polynômes d’Hermite et de Laguerrea l’aide des transformations de Gauss et de Hankel." Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 435 (1940). Part [https://dwc.knaw.nl/DL/publications/PU00017406.pdf I], [https://dwc.knaw.nl/DL/publications/PU00017407.pdf II], [https://dwc.knaw.nl/DL/publications/PU00017420.pdf III]</ref>{{Pg|location=Eq 46}}<math display="block">\begin{aligned} \frac{1}{\sqrt{a \pi}} & \int_{-\infty}^{+\infty} e^{-\frac{x^2}{a}} H_m\left(\frac{x+y}{\lambda}\right) H_n\left(\frac{x+z}{\mu}\right) d x \\ & = \left(1-\frac{a}{\lambda^2}\right)^{\frac{m}{2}}\left(1-\frac{a}{\mu^2}\right)^{\frac{n}{2}} \sum_{r=0}^{\min (m, n)} r!\binom{m}{r}\binom{n}{r} \left(\frac{2 a}{\sqrt{\left(\lambda^2-a\right)\left(\mu^2-a\right)}}\right)^r H_{m-r}\left(\frac{y}{\sqrt{\lambda^2-a}}\right) H_{n-r}\left(\frac{z}{\sqrt{\mu^2-a}}\right) \end{aligned}</math>where <math>a \in \mathbb C</math> has a positive real part. As a special case,<ref name=":2" />{{Pg|location=Eq 52}}<math display="block">\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^2} H_m(t \sin \theta+v \cos \theta) H_n(t \cos \theta-v \sin \theta) d t =(-1)^n \cos ^m \theta \sin ^n \theta H_{m+n}(v)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)