Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Independent component analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Based on infomax === Infomax ICA<ref name="Bell-Sejnowski">Bell, A. J.; Sejnowski, T. J. (1995). "An Information-Maximization Approach to Blind Separation and Blind Deconvolution", Neural Computation, 7, 1129-1159</ref> is essentially a multivariate, parallel version of projection pursuit. Whereas projection pursuit extracts a series of signals one at a time from a set of ''M'' signal mixtures, ICA extracts ''M'' signals in parallel. This tends to make ICA more robust than projection pursuit.<ref name="ReferenceA">James V. Stone (2004). "Independent Component Analysis: A Tutorial Introduction", The MIT Press Cambridge, Massachusetts, London, England; {{ISBN|0-262-69315-1}}</ref> The projection pursuit method uses [[Gram-Schmidt]] orthogonalization to ensure the independence of the extracted signal, while ICA use [[infomax]] and [[maximum likelihood]] estimate to ensure the independence of the extracted signal. The Non-Normality of the extracted signal is achieved by assigning an appropriate model, or prior, for the signal. The process of ICA based on [[infomax]] in short is: given a set of signal mixtures <math>\mathbf{x}</math> and a set of identical independent model [[cumulative distribution functions]](cdfs) <math>g</math>, we seek the unmixing matrix <math>\mathbf{W}</math> which maximizes the joint [[entropy]] of the signals <math>\mathbf{Y}=g(\mathbf{y})</math>, where <math>\mathbf{y}=\mathbf{Wx}</math> are the signals extracted by <math>\mathbf{W}</math>. Given the optimal <math>\mathbf{W}</math>, the signals <math>\mathbf{Y}</math> have maximum entropy and are therefore independent, which ensures that the extracted signals <math>\mathbf{y}=g^{-1}(\mathbf{Y})</math> are also independent. <math>g</math> is an invertible function, and is the signal model. Note that if the source signal model [[probability density function]] <math>p_s</math> matches the [[probability density function]] of the extracted signal <math>p_{\mathbf{y}}</math>, then maximizing the joint entropy of <math>Y</math> also maximizes the amount of [[mutual information]] between <math>\mathbf{x}</math> and <math>\mathbf{Y}</math>. For this reason, using entropy to extract independent signals is known as [[infomax]]. Consider the entropy of the vector variable <math>\mathbf{Y}=g(\mathbf{y})</math>, where <math>\mathbf{y}=\mathbf{Wx}</math> is the set of signals extracted by the unmixing matrix <math>\mathbf{W}</math>. For a finite set of values sampled from a distribution with pdf <math>p_{\mathbf{y}}</math>, the entropy of <math>\mathbf{Y}</math> can be estimated as: :<math> H(\mathbf{Y})=-\frac{1}{N}\sum_{t=1}^N \ln p_{\mathbf{Y}}(\mathbf{Y}^t) </math> The joint pdf <math>p_{\mathbf{Y}}</math> can be shown to be related to the joint pdf <math>p_{\mathbf{y}}</math> of the extracted signals by the multivariate form: :<math> p_{\mathbf{Y}}(Y)=\frac{p_{\mathbf{y}}(\mathbf{y})}{|\frac{\partial\mathbf{Y}}{\partial \mathbf{y}}|} </math> where <math>\mathbf{J}=\frac{\partial\mathbf{Y}}{\partial \mathbf{y}}</math> is the [[Jacobian matrix]]. We have <math>|\mathbf{J}|=g'(\mathbf{y})</math>, and <math>g'</math> is the pdf assumed for source signals <math>g'=p_s</math>, therefore, :<math> p_{\mathbf{Y}}(Y)=\frac{p_{\mathbf{y}}(\mathbf{y})}{|\frac{\partial\mathbf{Y}}{\partial \mathbf{y}}|}=\frac{p_\mathbf{y}(\mathbf{y})}{p_\mathbf{s}(\mathbf{y})} </math> therefore, :<math> H(\mathbf{Y})=-\frac{1}{N}\sum_{t=1}^N \ln\frac{p_\mathbf{y}(\mathbf{y})}{p_\mathbf{s}(\mathbf{y})} </math> We know that when <math>p_{\mathbf{y}}=p_s</math>, <math>p_{\mathbf{Y}}</math> is of uniform distribution, and <math>H({\mathbf{Y}})</math> is maximized. Since :<math> p_{\mathbf{y}}(\mathbf{y})=\frac{p_\mathbf{x}(\mathbf{x})}{|\frac{\partial\mathbf{y}}{\partial\mathbf{x}}|}=\frac{p_\mathbf{x}(\mathbf{x})}{|\mathbf{W}|} </math> where <math>|\mathbf{W}|</math> is the absolute value of the determinant of the unmixing matrix <math>\mathbf{W}</math>. Therefore, :<math> H(\mathbf{Y})=-\frac{1}{N}\sum_{t=1}^N \ln\frac{p_\mathbf{x}(\mathbf{x}^t)}{|\mathbf{W}|p_\mathbf{s}(\mathbf{y}^t)} </math> so, :<math> H(\mathbf{Y})=\frac{1}{N}\sum_{t=1}^N \ln p_\mathbf{s}(\mathbf{y}^t)+\ln|\mathbf{W}|+H(\mathbf{x}) </math> since <math>H(\mathbf{x})=-\frac{1}{N}\sum_{t=1}^N\ln p_\mathbf{x}(\mathbf{x}^t)</math>, and maximizing <math>\mathbf{W}</math> does not affect <math>H_{\mathbf{x}}</math>, so we can maximize the function :<math> h(\mathbf{Y})=\frac{1}{N}\sum_{t=1}^N \ln p_\mathbf{s}(\mathbf{y}^t)+\ln|\mathbf{W}| </math> to achieve the independence of the extracted signal. If there are ''M'' marginal pdfs of the model joint pdf <math>p_{\mathbf{s}}</math> are independent and use the commonly super-gaussian model pdf for the source signals <math>p_{\mathbf{s}}=(1-\tanh(\mathbf{s})^2)</math>, then we have :<math> h(\mathbf{Y})=\frac{1}{N}\sum_{i=1}^M\sum_{t=1}^N \ln (1-\tanh(\mathbf{w}_i^\mathsf{T}\mathbf{x}^t)^2)+\ln|\mathbf{W}| </math> In the sum, given an observed signal mixture <math>\mathbf{x}</math>, the corresponding set of extracted signals <math>\mathbf{y}</math> and source signal model <math>p_{\mathbf{s}}=g'</math>, we can find the optimal unmixing matrix <math>\mathbf{W}</math>, and make the extracted signals independent and non-gaussian. Like the projection pursuit situation, we can use gradient descent method to find the optimal solution of the unmixing matrix.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)