Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Injective module
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Injective cogenerators=== {{Main|injective cogenerator}} Maybe the most important injective module is the abelian group '''Q'''/'''Z'''. It is an [[injective cogenerator]] in the [[category of abelian groups]], which means that it is injective and any other module is contained in a suitably large product of copies of '''Q'''/'''Z'''. So in particular, every abelian group is a subgroup of an injective one. It is quite significant that this is also true over any ring: every module is a submodule of an injective one, or "the category of left ''R''-modules has enough injectives." To prove this, one uses the peculiar properties of the abelian group '''Q'''/'''Z''' to construct an injective cogenerator in the category of left ''R''-modules. For a left ''R''-module ''M'', the so-called "character module" ''M''<sup>+</sup> = Hom<sub>'''Z'''</sub>(''M'','''Q'''/'''Z''') is a right ''R''-module that exhibits an interesting duality, not between injective modules and [[projective module]]s, but between injective modules and [[flat module]]s {{harv|Enochs|Jenda|2000|pp=78β80}}. For any ring ''R'', a left ''R''-module is flat if and only if its character module is injective. If ''R'' is left noetherian, then a left ''R''-module is injective if and only if its character module is flat.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)