Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Intermediate value theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Practical applications== A similar result is the [[Borsuk–Ulam theorem]], which says that a continuous map from the <math>n</math>-sphere to Euclidean <math>n</math>-space will always map some pair of antipodal points to the same place. {{math proof|title=Proof for 1-dimensional case| proof=Take <math>f</math> to be any continuous function on a circle. Draw a line through the center of the circle, intersecting it at two opposite points <math>A</math> and <math>B</math>. Define <math>d</math> to be <math>f(A)-f(B)</math>. If the line is rotated 180 degrees, the value {{math|−''d''}} will be obtained instead. Due to the intermediate value theorem there must be some intermediate rotation angle for which {{math|1=''d'' = 0}}, and as a consequence {{math|1=''f''(''A'') = ''f''(''B'')}} at this angle.}} In general, for any continuous function whose domain is some closed convex {{nowrap|<math>n</math>-dimensional}} shape and any point inside the shape (not necessarily its center), there exist two antipodal points with respect to the given point whose functional value is the same. The theorem also underpins the explanation of why rotating a wobbly table will bring it to stability (subject to certain easily met constraints).<ref>[[Keith Devlin]] (2007) [https://web.archive.org/web/20140228044921/http://www.maa.org/external_archive/devlin/devlin_02_07.html How to stabilize a wobbly table]</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)