Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Iterated function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== There are [[List of chaotic maps|many chaotic maps]]. Well-known iterated functions include the [[Mandelbrot set]] and [[iterated function systems]]. [[Ernst Schröder (mathematician)|Ernst Schröder]],<ref name="schr">{{cite journal |last=Schröder |first=Ernst |author-link=Ernst Schröder (mathematician) |year=1870 |title=Ueber iterirte Functionen|journal=Math. Ann. |volume=3 |issue= 2|pages=296–322 | doi=10.1007/BF01443992 |s2cid=116998358 }}</ref> in 1870, worked out special cases of the [[logistic map]], such as the chaotic case {{math|1=''f''(''x'') = 4''x''(1 − ''x'')}}, so that {{math|1=Ψ(''x'') = arcsin({{radic|''x''}})<sup>2</sup>}}, hence {{math|1=''f'' <sup>''n''</sup>(''x'') = sin(2<sup>''n''</sup> arcsin({{radic|''x''}}))<sup>2</sup>}}. A nonchaotic case Schröder also illustrated with his method, {{math|1=''f''(''x'') = 2''x''(1 − ''x'')}}, yielded {{math|1=Ψ(''x'') = −{{sfrac|1|2}} ln(1 − 2''x'')}}, and hence {{math|1=''f''<sup>''n''</sup>(''x'') = −{{sfrac|1|2}}((1 − 2''x'')<sup>2<sup>''n''</sup></sup> − 1)}}. If {{mvar|''f''}} is the [[Group action (mathematics)|action]] of a group element on a set, then the iterated function corresponds to a [[free group]]. Most functions do not have explicit general [[closed-form expression]]s for the ''n''-th iterate. The table below lists some<ref name="schr"/> that do. Note that all these expressions are valid even for non-integer and negative ''n'', as well as non-negative integer ''n''. {| class=wikitable width=100% !<math>f(x)</math> !<math>f^n(x)</math> |- |<math>x+b</math> |<math>x+nb</math> |- |<math>ax+b \ (a\ne 1)</math> |<math>a^nx+\frac{a^n-1}{a-1}b</math> |- |<math>ax^b \ (b\ne 1)</math> |<math>a^{\frac{b^n-1}{b-1}}x^{b^n}</math> |- |<math>ax^2 + bx + \frac{b^2 - 2b}{4a}</math> (see note)<br> |<math>\frac{2\alpha^{2^n} - b}{2a}</math><br> where: *<math>\alpha = \frac{2ax + b}{2}</math> |- |<math>ax^2 + bx + \frac{b^2 - 2b - 8}{4a}</math> (see note)<br> |<math>\frac{2\alpha^{2^n} + 2\alpha^{-2^n} - b}{2a}</math><br> where: *<math>\alpha = \frac{2ax + b \pm \sqrt{(2ax + b)^2 - 16}}{4}</math> |- |<math>\frac{ax + b}{cx + d}</math> ([[fractional linear transformation]])<ref>Brand, Louis, "A sequence defined by a difference equation," ''[[American Mathematical Monthly]]'' '''62''', September 1955, 489–492. [https://www.jstor.org/discover/10.2307/2307362 online]</ref> |<math>\frac{a}{c} + \frac{bc - ad}{c} \left [ \frac{(cx - a + \alpha)\alpha^{n - 1} - (cx - a + \beta)\beta^{n - 1}}{(cx - a + \alpha)\alpha^{n} - (cx - a + \beta)\beta^{n}} \right ]</math><br> where: *<math>\alpha = \frac{a + d + \sqrt{(a - d)^2 + 4bc}}{2}</math> *<math>\beta = \frac{a + d - \sqrt{(a - d)^2 + 4bc}}{2}</math> |- |<math>g^{-1}\Big(h\bigl(g(x)\bigr)\Big)</math> |<math>g^{-1}\Bigl(h^n\bigl(g(x)\bigr)\Bigr)</math> |- |<math>g^{-1}\bigl(g(x)+b\bigr)</math> (generic [[Abel equation]]) |<math>g^{-1}\bigl(g(x)+nb\bigr)</math> |- | <math>\sqrt{x^2 + b}</math> | <math>\sqrt{x^2 + bn}</math> |- |<math>g^{-1}\Bigl(a\ g(x)+b\Bigr) \ (a\ne 1 \vee b=0)</math> |<math>g^{-1}\Bigl(a^ng(x)+\frac{a^n-1}{a-1}b\Bigr)</math> |- | <math>\sqrt{ax^2 + b}</math> | <math>\sqrt{a^nx^2 + \frac{a^n - 1}{a - 1}b}</math> |- | <math>T_m (x)=\cos (m \arccos x)</math> ([[Chebyshev polynomials#Trigonometric definition|Chebyshev polynomial]] for integer ''m'') | <math>T_{mn}=\cos(m^n \arccos x)</math> |} Note: these two special cases of {{math|''ax''<sup>2</sup> + ''bx'' + ''c''}} are the only cases that have a closed-form solution. Choosing ''b'' = 2 = –''a'' and ''b'' = 4 = –''a'', respectively, further reduces them to the nonchaotic and chaotic logistic cases discussed prior to the table. Some of these examples are related among themselves by simple conjugacies.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)