Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
K-theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== K<sub>0</sub> of a projective bundle === Another important formula for the Grothendieck group is the projective bundle formula:<ref>{{Cite journal|last=Manin|first=Yuri I|author-link=Yuri Manin|date=1969-01-01|title=Lectures on the K-functor in algebraic geometry|journal=Russian Mathematical Surveys|language=en|volume=24|issue=5|pages=1β89|doi=10.1070/rm1969v024n05abeh001357|issn=0036-0279|bibcode=1969RuMaS..24....1M}}</ref> given a rank r vector bundle <math>\mathcal{E}</math> over a Noetherian scheme <math>X</math>, the Grothendieck group of the projective bundle <math>\mathbb{P}(\mathcal{E})=\operatorname{Proj}(\operatorname{Sym}^\bullet(\mathcal{E}^\vee))</math> is a free <math>K(X)</math>-module of rank ''r'' with basis <math>1,\xi,\dots,\xi^{n-1}</math>. This formula allows one to compute the Grothendieck group of <math>\mathbb{P}^n_\mathbb{F}</math>. This make it possible to compute the <math>K_0</math> or Hirzebruch surfaces. In addition, this can be used to compute the Grothendieck group <math>K(\mathbb{P}^n)</math> by observing it is a projective bundle over the field <math>\mathbb{F}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)