Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lagrange multiplier
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example 3 === [[Image:Lagrange simple.svg|thumb|right|300px| Illustration of constrained optimization problem '''3'''.]] This example deals with more strenuous calculations, but it is still a single constraint problem. Suppose one wants to find the maximum values of <math display="block"> f(x, y) = x^2 y</math> with the condition that the <math>\ x\ </math>- and <math>\ y\ </math>-coordinates lie on the circle around the origin with radius <math>\ \sqrt{3\ } ~.</math> That is, subject to the constraint <math display="block"> g(x,y) = x^2 + y^2 - 3 = 0 ~.</math> As there is just a single constraint, there is a single multiplier, say <math>\ \lambda ~.</math> The constraint <math>\ g(x,y)\ </math> is identically zero on the circle of radius <math>\ \sqrt{3\ } ~.</math> Any multiple of <math>\ g(x,y)\ </math> may be added to <math>\ g(x,y)\ </math> leaving <math>\ g(x,y)\ </math> unchanged in the region of interest (on the circle where our original constraint is satisfied). Applying the ordinary Lagrange multiplier method yields <math display="block">\begin{align} \mathcal{L}(x, y, \lambda) &= f(x,y) + \lambda \cdot g(x, y) \\ &= x^2y + \lambda (x^2 + y^2 - 3)\ , \end{align}</math> from which the gradient can be calculated: <math display="block">\begin{align} \nabla_{x,y,\lambda} \mathcal{L}(x , y, \lambda) &= \left ( \frac{\partial \mathcal{L}}{\partial x}, \frac{\partial \mathcal{L}}{\partial y}, \frac{\partial \mathcal{L}}{\partial \lambda} \right) \\ &= \left ( 2 x y + 2 \lambda x, x^2 + 2 \lambda y, x^2 + y^2 -3 \right) ~. \end{align}</math> And therefore: <math display="block">\nabla_{x,y,\lambda} \mathcal{L}(x , y, \lambda)=0 \quad \iff \quad \begin{cases} 2 x y + 2 \lambda x = 0 \\ x^2 + 2 \lambda y = 0 \\ x^2 + y^2 - 3 = 0 \end{cases} \quad \iff \quad \begin{cases} x (y + \lambda) = 0 & \text{(i)} \\ x^2 = -2 \lambda y & \text{(ii)} \\ x^2 + y^2 = 3 & \text{(iii)} \end{cases} </math> (iii) is just the original constraint. (i) implies <math>\ x=0\ </math> or <math>\ \lambda=-y ~.</math> If <math>x=0</math> then <math>\ y = \pm \sqrt{3\ }\ </math> by (iii) and consequently <math>\ \lambda=0\ </math> from (ii). If <math>\ \lambda=-y\ ,</math> substituting this into (ii) yields <math>\ x^2 = 2y^2 ~.</math> Substituting this into (iii) and solving for <math>\ y\ </math> gives <math>\ y=\pm1 ~.</math> Thus there are six critical points of <math>\ \mathcal{L}\ :</math> <math display="block"> (\sqrt{2\ },1,-1); \quad (-\sqrt{2\ },1,-1); \quad (\sqrt{2\ },-1,1); \quad (-\sqrt{2\ },-1,1); \quad (0,\sqrt{3\ }, 0); \quad (0,-\sqrt{3\ }, 0) ~.</math> Evaluating the objective at these points, one finds that <math display="block"> f(\pm\sqrt{2\ },1) = 2; \quad f(\pm\sqrt{2\ },-1) = -2; \quad f(0,\pm \sqrt{3\ }) = 0 ~.</math> Therefore, the objective function attains the [[global maximum]] (subject to the constraints) at <math>\ (\pm\sqrt{2\ },1\ )</math> and the [[global minimum]] at <math>\ (\pm\sqrt{2\ },-1) ~.</math> The point <math>\ (0,\sqrt{3\ })\ </math> is a [[local minimum]] of <math>\ f\ </math> and <math>\ (0,-\sqrt{3\ })\ </math> is a [[local maximum]] of <math>\ f\ ,</math> as may be determined by consideration of the [[Hessian (mathematics)#Bordered Hessian|Hessian matrix]] of <math>\ \mathcal{L}(x,y,0) ~.</math> Note that while <math>\ (\sqrt{2\ }, 1, -1)\ </math> is a critical point of <math>\ \mathcal{L}\ ,</math> it is not a local extremum of <math>\ \mathcal{L} ~.</math> We have <math display="block">\mathcal{L} \left (\sqrt{2\ } + \varepsilon, 1, -1 + \delta \right ) = 2 + \delta \left( \varepsilon^2 + \left (2\sqrt{2\ } \right)\varepsilon \right) ~.</math> Given any neighbourhood of <math>\ (\sqrt{2\ }, 1, -1)\ ,</math> one can choose a small positive <math>\ \varepsilon\ </math> and a small <math>\ \delta\ </math> of either sign to get <math>\ \mathcal{L}</math> values both greater and less than <math>\ 2 ~.</math> This can also be seen from the Hessian matrix of <math>\ \mathcal{L}\ </math> evaluated at this point (or indeed at any of the critical points) which is an [[indefinite matrix]]. Each of the critical points of <math>\ \mathcal{L}\ </math> is a [[saddle point]] of <math>\ \mathcal{L} ~.</math><ref name=Walsh1975/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)