Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lambert W function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Representations == The principal branch of the Lambert function can be represented by a proper integral, due to Poisson:<ref name = "Finch">{{cite book | last = Finch | first = S. R. | title = Mathematical constants | page = 450 | year = 2003 | publisher = Cambridge University Press }}</ref> : <math>-\frac{\pi}{2}W_0(-x)=\int_0^\pi\frac{\sin\left(\tfrac32 t\right)-xe^{\cos t}\sin\left(\tfrac52 t-\sin t\right)}{1-2xe^{\cos t}\cos(t-\sin t)+x^2e^{2\cos t}}\sin\left(\tfrac12 t\right)\,dt \quad \text{for } |x| < \frac1{e}. </math> Another representation of the principal branch was found by Kalugin–Jeffrey–Corless:<ref> {{cite journal | last1 = Kalugin | first1 = German A. | last2 = Jeffrey | first2 = David J. | last3 = Corless | first3 = Robert M. | doi = 10.1080/10652469.2011.640327 | issue = 11 | journal = Integral Transforms and Special Functions | mr = 2989751 | pages = 817–829 | title = Bernstein, Pick, Poisson and related integral expressions for Lambert {{mvar|W}} | url = https://www.uwo.ca/apmaths/faculty/jeffrey/pdfs/BersteinPick.pdf | volume = 23 | year = 2012 }} See Theorem 3.4, p. 821 of published version (p. 5 of preprint).</ref> : <math>W_0(x)=\frac{1}{\pi}\int_0^\pi\ln\left(1+x\frac{\sin t}{t}e^{t\cot t}\right)dt.</math> The following [[continued fraction]] representation also holds for the principal branch:<ref name = "Dubinov"> {{cite book | last1 = Dubinov| first1 = A. E. | last2 = Dubinova| first2 = I. D. | last3 = Saǐkov| first3 = S. K. | title = The Lambert ''W'' Function and Its Applications to Mathematical Problems of Physics (in Russian) | page = 53 | year = 2006 | publisher = RFNC-VNIIEF }}</ref> : <math> W_0(x) = \cfrac{x}{1+\cfrac{x}{1+\cfrac{x}{2+\cfrac{5x}{3+\cfrac{17x}{10+\cfrac{133x}{17+\cfrac{1927x}{190+\cfrac{13582711x}{94423+\ddots}}}}}}}}. </math> Also, if {{math|{{abs|''W''<sub>0</sub>(''x'')}} < 1}}:<ref>{{Cite book |last1=Robert M. |first1=Corless |last2=David J. |first2=Jeffrey |last3=Donald E. |first3=Knuth |title=Proceedings of the 1997 international symposium on Symbolic and algebraic computation - ISSAC '97 |chapter=A sequence of series for the Lambert ''W'' function |year=1997 |pages=197–204 |doi=10.1145/258726.258783| isbn=978-0897918756 |s2cid=6274712 }}</ref> : <math>W_0(x) = \cfrac{x}{\exp \cfrac{x}{\exp \cfrac{x}{\ddots}}}.</math> In turn, if {{math|{{abs|''W''<sub>0</sub>(''x'')}} > 1}}, then : <math>W_0(x) = \ln \cfrac{x}{\ln \cfrac{x}{\ln \cfrac{x}{\ddots}}}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)