Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Learning classifier system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Prediction ==== Whether or not rule compaction has been applied, the output of an LCS algorithm is a population of classifiers which can be applied to making predictions on previously unseen instances. The prediction mechanism is not part of the supervised LCS learning cycle itself, however it would play an important role in a reinforcement learning LCS learning cycle. For now we consider how the prediction mechanism can be applied for making predictions to test data. When making predictions, the LCS learning components are deactivated so that the population does not continue to learn from incoming testing data. A test instance is passed to [P] where a match set [M] is formed as usual. At this point the match set is differently passed to a prediction array. Rules in the match set can predict different actions, therefore a voting scheme is applied. In a simple voting scheme, the action with the strongest supporting 'votes' from matching rules wins, and becomes the selected prediction. All rules do not get an equal vote. Rather the strength of the vote for a single rule is commonly proportional to its numerosity and fitness. This voting scheme and the nature of how LCS's store knowledge, suggests that LCS algorithms are implicitly ''ensemble learners''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)