Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relationship to bases== {{hatnote|Below, we assume that the dimension is finite. For a discussion of analogous results in infinite dimensions, see [[Schauder basis]].}} ===Basis of the dual space=== Let the vector space {{mvar|V}} have a basis <math>\mathbf{e}_1, \mathbf{e}_2,\dots,\mathbf{e}_n</math>, not necessarily [[orthogonal]]. Then the [[dual space]] <math>V^*</math> has a basis <math>\tilde{\omega}^1,\tilde{\omega}^2,\dots,\tilde{\omega}^n</math> called the [[dual basis]] defined by the special property that <math display="block"> \tilde{\omega}^i (\mathbf e_j) = \begin{cases} 1 &\text{if}\ i = j\\ 0 &\text{if}\ i \neq j. \end{cases} </math> Or, more succinctly, <math display="block"> \tilde{\omega}^i (\mathbf e_j) = \delta_{ij} </math> where <math>\delta_{ij}</math> is the [[Kronecker delta]]. Here the superscripts of the basis functionals are not exponents but are instead [[Covariance and contravariance of vectors|contravariant]] indices. A linear functional <math>\tilde{u}</math> belonging to the dual space <math>\tilde{V}</math> can be expressed as a [[linear combination]] of basis functionals, with coefficients ("components") {{math|''u<sub>i</sub>''}}, <math display="block">\tilde{u} = \sum_{i=1}^n u_i \, \tilde{\omega}^i. </math> Then, applying the functional <math>\tilde{u}</math> to a basis vector <math>\mathbf{e}_j</math> yields <math display="block">\tilde{u}(\mathbf e_j) = \sum_{i=1}^n \left(u_i \, \tilde{\omega}^i\right) \mathbf e_j = \sum_i u_i \left[\tilde{\omega}^i \left(\mathbf e_j\right)\right] </math> due to linearity of scalar multiples of functionals and pointwise linearity of sums of functionals. Then <math display="block">\begin{align} \tilde{u}({\mathbf e}_j) &= \sum_i u_i \left[\tilde{\omega}^i \left({\mathbf e}_j\right)\right] \\& = \sum_i u_i {\delta}_{ij} \\ &= u_j. \end{align}</math> So each component of a linear functional can be extracted by applying the functional to the corresponding basis vector. === The dual basis and inner product === When the space {{mvar|V}} carries an [[inner product]], then it is possible to write explicitly a formula for the dual basis of a given basis. Let {{mvar|V}} have (not necessarily orthogonal) basis <math>\mathbf{e}_1,\dots, \mathbf{e}_n.</math> In three dimensions ({{math|1=''n'' = 3}}), the dual basis can be written explicitly <math display="block"> \tilde{\omega}^i(\mathbf{v}) = \frac{1}{2} \left\langle \frac { \sum_{j=1}^3\sum_{k=1}^3\varepsilon^{ijk} \, (\mathbf e_j \times \mathbf e_k)} {\mathbf e_1 \cdot \mathbf e_2 \times \mathbf e_3} , \mathbf{v} \right\rangle ,</math> for <math>i = 1, 2, 3,</math> where ''Ξ΅'' is the [[Levi-Civita symbol]] and <math>\langle \cdot , \cdot \rangle</math> the inner product (or [[dot product]]) on {{mvar|V}}. In higher dimensions, this generalizes as follows <math display="block"> \tilde{\omega}^i(\mathbf{v}) = \left\langle \frac{\sum_{1 \le i_2 < i_3 < \dots < i_n \le n} \varepsilon^{ii_2\dots i_n}(\star \mathbf{e}_{i_2} \wedge \cdots \wedge \mathbf{e}_{i_n})}{\star(\mathbf{e}_1\wedge\cdots\wedge\mathbf{e}_n)}, \mathbf{v} \right\rangle ,</math> where <math>\star</math> is the [[Hodge star operator]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)