Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lists of integrals
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Absolute-value functions=== Let {{math|''f''}} be a [[continuous function]], that has at most one [[zero of a function|zero]]. If {{math|''f''}} has a zero, let {{math|''g''}} be the unique antiderivative of {{math|''f''}} that is zero at the root of {{math|''f''}}; otherwise, let {{math|''g''}} be any antiderivative of {{math|''f''}}. Then <math display="block">\int \left| f(x)\right|\,dx = \sgn(f(x))g(x)+C,</math> where {{math|sgn(''x'')}} is the [[sign function]], which takes the values β1, 0, 1 when {{math|''x''}} is respectively negative, zero or positive. This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on {{math|''g''}} is here for insuring the continuity of the integral. This gives the following formulas (where {{math|''a'' β 0}}), which are valid over any interval where {{math|''f''}} is continuous (over larger intervals, the constant {{mvar|C}} must be replaced by a [[piecewise constant]] function): *<math>\int \left| (ax + b)^n \right|\,dx = \sgn(ax + b) {(ax + b)^{n+1} \over a(n+1)} + C</math>{{pb}}when {{math|''n''}} is odd, and <math>n \neq -1</math>. *<math>\int \left| \tan{ax} \right|\,dx = -\frac{1}{a}\sgn(\tan{ax}) \ln(\left|\cos{ax}\right|) + C</math>{{pb}}when <math display="inline">ax \in \left( n\pi - \frac{\pi}{2}, n\pi + \frac{\pi}{2} \right) </math> for some integer {{math|''n''}}. *<math>\int \left| \csc{ax} \right|\,dx = -\frac{1}{a}\sgn(\csc{ax}) \ln(\left| \csc{ax} + \cot{ax} \right|) + C </math>{{pb}}when <math>ax \in \left( n\pi, n\pi + \pi \right) </math> for some integer {{math|''n''}}. *<math>\int \left| \sec{ax} \right|\,dx = \frac{1}{a}\sgn(\sec{ax}) \ln(\left| \sec{ax} + \tan{ax} \right|) + C </math>{{pb}}when <math display="inline">ax \in \left( n\pi - \frac{\pi}{2}, n\pi + \frac{\pi}{2} \right) </math> for some integer {{math|''n''}}. *<math>\int \left| \cot{ax} \right|\,dx = \frac{1}{a}\sgn(\cot{ax}) \ln(\left|\sin{ax}\right|) + C </math>{{pb}}when <math>ax \in \left( n\pi, n\pi + \pi \right) </math> for some integer {{math|''n''}}. If the function {{math|''f''}} does not have any continuous antiderivative which takes the value zero at the zeros of {{math|''f''}} (this is the case for the sine and the cosine functions), then {{math|sgn(''f''(''x'')) β« ''f''(''x'') ''dx''}} is an antiderivative of {{math|''f''}} on every [[interval (mathematics)|interval]] on which {{math|''f''}} is not zero, but may be discontinuous at the points where {{math|1=''f''(''x'') = 0}}. For having a continuous antiderivative, one has thus to add a well chosen [[step function]]. If we also use the fact that the absolute values of sine and cosine are periodic with period {{pi}}, then we get: *<math>\int \left| \sin{ax} \right|\,dx = {2 \over a} \left\lfloor \frac{ax}{\pi} \right\rfloor - {1 \over a} \cos{\left( ax - \left\lfloor \frac{ax}{\pi} \right\rfloor \pi \right)} + C</math> {{citation needed|date=April 2013}} *<math>\int \left|\cos {ax}\right|\,dx = {2 \over a} \left\lfloor \frac{ax}{\pi} + \frac12 \right\rfloor + {1 \over a} \sin{\left( ax - \left\lfloor \frac{ax}{\pi} + \frac12 \right\rfloor \pi \right)} + C</math> {{citation needed|date=April 2013}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)