Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Marginal cost
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Profit maximization == The profit maximizing graph on the right side of the page represents optimal production quantity when both marginal cost and the marginal profit line intercepts. The black line represents the intersection where the profits are the greatest (marginal revenue = marginal cost). The left side of the black vertical line marked as "profit-maximising quantity" is where the marginal revenue is larger than marginal cost. If a firm sets its production on the left side of the graph and decides to increase the output, the additional revenue per output obtained will exceed the additional cost per output. From the "profit maximizing graph", we could observe that the revenue covers both bar A and B, meanwhile the cost only covers B. Of course A+B earns you a profit but the increase in output to the point of MR=MC yields extra profit that can cover the revenue for the missing A. The firm is recommended to increase output to reach (Theory and Applications of Microeconomics, 2012). On the other hand, the right side of the black line (Marginal revenue = marginal cost), shows that marginal cost is more than marginal revenue. Suppose a firm sets its output on this side, if it reduces the output, the cost will decrease from C and D which exceeds the decrease in revenue which is D. Therefore, decreasing output until the point of (marginal revenue=marginal cost) will lead to an increase in profit (Theory and Applications of Microeconomics, 2012). [[File:Profit maximizing graph.png|thumb|Profit Maximizing Graph]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)