Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Newton's method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof of quadratic convergence for Newton's iterative method=== According to [[Taylor's theorem]], any function {{math|{{var|f}}({{var|x}})}} which has a continuous second derivative can be represented by an expansion about a point that is close to a root of {{math|{{var|f}}({{var|x}})}}. Suppose this root is {{mvar|α}}. Then the expansion of {{math|{{var|f}}({{var|α}})}} about {{math|{{var|x}}{{sub|{{var|n}}}}}} is: {{NumBlk2|:|<math>f(\alpha) = f(x_n) + f'(x_n)(\alpha - x_n) + R_1 \,</math>|1}} where the [[Lagrange remainder|Lagrange form of the Taylor series expansion remainder]] is <math display="block">R_1 = \frac{1}{2!}f''(\xi_n)\left(\alpha - x_n\right)^{2} \,,</math> where {{math|{{var|ξ}}{{sub|{{var|n}}}}}} is in between {{math|{{var|x}}{{sub|{{var|n}}}}}} and {{mvar|α}}. Since {{mvar|α}} is the root, ({{EquationNote|1}}) becomes: {{NumBlk2|:|<math>0 = f(\alpha) = f(x_n) + f'(x_n)(\alpha - x_n) + \tfrac12f''(\xi_n)\left(\alpha - x_n\right)^2 \,</math>|2}} Dividing equation ({{EquationNote|2}}) by {{math|{{var|{{prime|f}}}}({{var|x}}{{sub|{{var|n}}}})}} and rearranging gives {{NumBlk2|:|<math> \frac {f(x_n)}{f'(x_n)}+\left(\alpha-x_n\right) = \frac {- f'' (\xi_n)}{2 f'(x_n)}\left(\alpha-x_n\right)^2 </math>|3}} Remembering that {{math|{{var|x}}{{sub|{{var|n}} + 1}}}} is defined by {{NumBlk2|:|<math> x_{n+1} = x_{n} - \frac {f(x_n)}{f'(x_n)} \,,</math>|4}} one finds that <math display="block"> \underbrace{\alpha - x_{n+1}}_{\varepsilon_{n+1}} = \frac {- f'' (\xi_n)}{2 f'(x_n)} {(\,\underbrace{\alpha - x_n}_{\varepsilon_{n}}\,)}^2 \,.</math> That is, {{NumBlk2|:|<math> \varepsilon_{n+1} = \frac {- f'' (\xi_n)}{2 f'(x_n)} \cdot \varepsilon_n^2 \,.</math>|5}} Taking the absolute value of both sides gives {{NumBlk2|:|<math> \left| {\varepsilon_{n+1}}\right| = \frac {\left| f'' (\xi_n) \right| }{2 \left| f'(x_n) \right|} \cdot \varepsilon_n^2 \,. </math> |6}} Equation ({{EquationNote|6}}) shows that the [[order of convergence]] is at least quadratic if the following conditions are satisfied: # {{math|{{var|{{prime|f}}}}({{var|x}}) ≠ 0}}; for all {{math|{{var|x}} ∈ {{var|I}}}}, where {{mvar|I}} is the interval {{math|[{{var|α}} − {{abs|{{var|ε}}{{sub|0}}}}, {{var|α}} + {{abs|{{var|ε}}{{sub|0}}}}]}}; # {{math|{{var|{{prime|f|c=″}}}}({{var|x}})}} is continuous, for all {{math|{{var|x}} ∈ {{var|I}}}}; # {{math|{{var|M}} {{abs|{{var|ε}}{{sub|0}}}} < 1}} where {{mvar|M}} is given by <math display="block"> M = \frac12 \left( \sup_{x \in I} \vert f'' (x) \vert \right) \left( \sup_{x \in I} \frac {1}{ \vert f'(x) \vert } \right) . \,</math> If these conditions hold, <math display="block"> \vert \varepsilon_{n+1} \vert \leq M \cdot \varepsilon_n^2 \,. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)