Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Nondeterministic finite automaton
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Equivalence to NFA=== To show NFA-ε is equivalent to NFA, first note that NFA is a special case of NFA-ε, so it remains to show for every NFA-ε, there exists an equivalent NFA. Given an NFA with epsilon moves <math>M = (Q, \Sigma, \delta, q_0, F) ,</math> define an NFA <math>M' = (Q, \Sigma, \delta', q_0, F') ,</math> where :<math>F' = \begin{cases} F \cup \{ q_0 \} & \text{ if } E(q_0) \cap F \neq \{\} \\ F & \text{ otherwise } \\ \end{cases} </math> and :<math>\delta'(q,a) = \delta^*(q,a) </math> for each state <math>q \in Q</math> and each symbol <math>a \in \Sigma ,</math> using the extended transition function <math>\delta^*</math> defined above. One has to distinguish the transition functions of <math>M</math> and <math>M' ,</math> viz. <math>\delta</math> and <math>\delta' ,</math> and their extensions to strings, <math>\delta</math> and <math>\delta'^* ,</math> respectively. By construction, <math>M'</math> has no ε-transitions. One can prove that <math>\delta'^*(q_0,w) = \delta^*(q_0,w)</math> for each string <math>w \neq \varepsilon</math>, by [[mathematical induction|induction]] on the length of <math>w .</math> Based on this, one can show that <math>\delta'^*(q_0,w) \cap F' \neq \{\}</math> if, and only if, <math>\delta^*(q_0,w) \cap F \neq \{\},</math> for each string <math>w \in \Sigma^* :</math> * If <math>w = \varepsilon ,</math> this follows from the definition of <math>F' .</math> * Otherwise, let <math>w = va</math> with <math>v \in \Sigma^*</math> and <math>a \in \Sigma .</math> :From <math>\delta'^*(q_0,w) = \delta^*(q_0,w)</math> and <math>F \subseteq F' ,</math> we have <math display=block>\delta'^*(q_0,w) \cap F' \neq \{\} \;\Leftarrow\; \delta^*(q_0,w) \cap F \neq \{\} ;</math> we still have to show the "<math>\Rightarrow</math>" direction. :*If <math>\delta'^*(q_0,w)</math> contains a state in <math>F' \setminus \{ q_0 \} ,</math> then <math>\delta^*(q_0,w)</math> contains the same state, which lies in <math>F</math>. :*If <math>\delta'^*(q_0,w)</math> contains <math>q_0 ,</math> and <math>q_0 \in F ,</math> then <math>\delta^*(q_0,w)</math> also contains a state in <math>F ,</math> viz. <math>q_0 .</math> :*If <math>\delta'^*(q_0,w)</math> contains <math>q_0 ,</math> and <math>q_0 \not\in F ,</math> but <math>q_0\in F',</math> then there exists a state in <math>E(q_0)\cap F</math>, and the same state must be in <math display=inline>\delta^*(q_0,w) = \bigcup_{r \in \delta^*(q,v)} E(\delta(r,a)) .</math>{{sfn|Hopcroft|Ullman|1979|pp=26-27}} Since NFA is equivalent to DFA, NFA-ε is also equivalent to DFA.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)