Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Nth root
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Geometric constructibility== The [[ancient Greek mathematicians]] knew how to [[compass-and-straightedge construction|use compass and straightedge]] to construct a length equal to the square root of a given length, when an auxiliary line of unit length is given. In 1837 [[Pierre Wantzel]] proved that an ''n''th root of a given length cannot be constructed if ''n'' is not a power of 2.<ref>{{Citation|first = [[Monsieur|M.]] L.|last = Wantzel|title = Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas |journal = Journal de Mathématiques Pures et Appliquées|year = 1837|volume = 1|issue = 2|pages = 366–372|url = http://visualiseur.bnf.fr/ConsulterElementNum?O=NUMM-16381&Deb=374&Fin=380&E=PDF}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)