Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Operator (physics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Table of Quantum Mechanics operators === The operators used in quantum mechanics are collected in the table below (see for example<ref name="QUANTUM CHEMISRTY 1977"/><ref>[https://feynmanlectures.caltech.edu/III_20.html Operators - The Feynman Lectures on Physics]</ref>). The bold-face vectors with circumflexes are not [[unit vector]]s, they are 3-vector operators; all three spatial components taken together. :{| class="wikitable" |- style="vertical-align:top;" ! scope="col" | Operator (common name/s) ! scope="col" | Cartesian component ! scope="col" | General definition ! scope="col" | SI unit ! scope="col" | Dimension |- style="vertical-align:top;" ! [[Position operator|Position]] | <math>\begin{align} \hat{x} &= x, & \hat{y} &= y, & \hat{z} &= z \end{align}</math> | <math> \mathbf{\hat{r}} = \mathbf{r} \,\!</math> | m | [L] |- style="vertical-align:top;" !rowspan="2"| [[Momentum operator|Momentum]] | General <math> \begin{align} \hat{p}_x & = -i \hbar \frac{\partial}{\partial x}, & \hat{p}_y & = -i \hbar \frac{\partial}{\partial y}, & \hat{p}_z & = -i \hbar \frac{\partial}{\partial z} \end{align}</math> | General <math> \mathbf{\hat{p}} = -i \hbar \nabla \,\!</math> | J s m<sup>β1</sup> = N s | [M] [L] [T]<sup>β1</sup> |- style="vertical-align:top;" | Electromagnetic field <math> \begin{align} \hat{p}_x = -i \hbar \frac{\partial}{\partial x} - qA_x \\ \hat{p}_y = -i \hbar \frac{\partial}{\partial y} - qA_y \\ \hat{p}_z = -i \hbar \frac{\partial}{\partial z} - qA_z \end{align}</math> | Electromagnetic field (uses [[kinetic momentum]]; '''A''', vector potential) <math> \begin{align} \mathbf{\hat{p}} & = \mathbf{\hat{P}} - q\mathbf{A} \\ & = -i \hbar \nabla - q\mathbf{A} \\ \end{align}\,\!</math> | J s m<sup>β1</sup> = N s | [M] [L] [T]<sup>β1</sup> |- style="vertical-align:top;" !rowspan="3"| [[Kinetic energy]] | Translation <math> \begin{align} \hat{T}_x & = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} \\[2pt] \hat{T}_y & = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial y^2} \\[2pt] \hat{T}_z & = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2} \\ \end{align} </math> | <math> \begin{align} \hat{T} & = \frac{1}{2m}\mathbf{\hat{p}}\cdot\mathbf{\hat{p}} \\ & = \frac{1}{2m}(-i \hbar \nabla)\cdot(-i \hbar \nabla) \\ & = \frac{-\hbar^2 }{2m}\nabla^2 \end{align}\,\!</math> | J | [M] [L]<sup>2</sup> [T]<sup>β2</sup> |- style="vertical-align:top;" | Electromagnetic field <math> \begin{align} \hat{T}_x & = \frac{1}{2m}\left(-i \hbar \frac{\partial}{\partial x} - q A_x \right)^2 \\ \hat{T}_y & = \frac{1}{2m}\left(-i \hbar \frac{\partial}{\partial y} - q A_y \right)^2 \\ \hat{T}_z & = \frac{1}{2m}\left(-i \hbar \frac{\partial}{\partial z} - q A_z \right)^2 \end{align}\,\!</math> | Electromagnetic field ('''A''', [[vector potential]]) <math> \begin{align} \hat{T} & = \frac{1}{2m}\mathbf{\hat{p}}\cdot\mathbf{\hat{p}} \\ & = \frac{1}{2m}(-i \hbar \nabla - q\mathbf{A})\cdot(-i \hbar \nabla - q\mathbf{A}) \\ & = \frac{1}{2m}(-i \hbar \nabla - q\mathbf{A})^2 \end{align}\,\!</math> | J | [M] [L]<sup>2</sup> [T]<sup>β2</sup> |- style="vertical-align:top;" | Rotation (''I'', [[moment of inertia]]) <math> \begin{align} \hat{T}_{xx} & = \frac{\hat{J}_x^2}{2I_{xx}} \\ \hat{T}_{yy} & = \frac{\hat{J}_y^2}{2I_{yy}} \\ \hat{T}_{zz} & = \frac{\hat{J}_z^2}{2I_{zz}} \\ \end{align}\,\!</math> | Rotation <math> \hat{T} = \frac{\mathbf{\hat{J}}\cdot\mathbf{\hat{J}}}{2I} \,\!</math>{{Citation needed|reason=does not seem to be correct, inconsistent with the Cartesian entriesdate=November 2012|date=November 2012}} | J | [M] [L]<sup>2</sup> [T]<sup>β2</sup> |- style="vertical-align:top;" ! Potential energy | N/A |<math> \hat{V} = V\left( \mathbf{r}, t \right) = V \,\!</math> | J | [M] [L]<sup>2</sup> [T]<sup>β2</sup> |- style="vertical-align:top;" ! Total [[energy operator|energy]] | N/A | Time-dependent potential:<br /> <math> \hat{E} = i \hbar \frac{\partial}{\partial t} \,\!</math> Time-independent:<br /> <math> \hat{E} = E \,\!</math> | J | [M] [L]<sup>2</sup> [T]<sup>β2</sup> |- style="vertical-align:top;" ! [[Hamiltonian operator|Hamiltonian]] | |<math> \begin{align} \hat{H} & = \hat{T} + \hat{V} \\ & = \frac{1}{2m}\mathbf{\hat{p}}\cdot\mathbf{\hat{p}} + V \\ & = \frac{1}{2m}\hat{p}^2 + V \\ \end{align} \,\!</math> | J | [M] [L]<sup>2</sup> [T]<sup>β2</sup> |- style="vertical-align:top;" ! [[Angular momentum operator]] | <math>\begin{align} \hat{L}_x & = -i\hbar \left(y {\partial \over \partial z} - z {\partial \over \partial y}\right) \\ \hat{L}_y & = -i\hbar \left(z {\partial \over \partial x} - x {\partial \over \partial z}\right) \\ \hat{L}_z & = -i\hbar \left(x {\partial \over \partial y} - y {\partial \over \partial x}\right) \end{align}</math> | <math>\mathbf{\hat{L}} = \mathbf{r} \times -i\hbar \nabla </math> | J s = N s m | [M] [L]<sup>2</sup> [T]<sup>β1</sup> |- style="vertical-align:top;" ! [[Spin (physics)|Spin]] angular momentum | <math>\begin{align} \hat{S}_x &= {\hbar \over 2} \sigma_x & \hat{S}_y &= {\hbar \over 2} \sigma_y & \hat{S}_z &= {\hbar \over 2} \sigma_z \end{align}</math> where <math>\begin{align} \sigma_x &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ \sigma_y &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \\ \sigma_z &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{align}</math> are the [[Pauli matrices]] for [[spin-1/2]] particles. | <math>\mathbf{\hat{S}} = {\hbar \over 2} \boldsymbol{\sigma} \,\!</math> where '''Ο''' is the vector whose components are the Pauli matrices. | J s = N s m | [M] [L]<sup>2</sup> [T]<sup>β1</sup> |- style="vertical-align:top;" ! Total angular momentum | <math>\begin{align} \hat{J}_x & = \hat{L}_x + \hat{S}_x \\ \hat{J}_y & = \hat{L}_y + \hat{S}_y \\ \hat{J}_z & = \hat{L}_z + \hat{S}_z \end{align}</math> | <math>\begin{align} \mathbf{\hat{J}} & = \mathbf{\hat{L}} + \mathbf{\hat{S}} \\ & = -i\hbar \mathbf{r}\times\nabla + \frac{\hbar}{2}\boldsymbol{\sigma} \end{align}</math> | J s = N s m | [M] [L]<sup>2</sup> [T]<sup>β1</sup> |- style="vertical-align:top;" ! [[Transition dipole moment]] (electric) | <math>\begin{align} \hat{d}_x & = q\hat{x}, & \hat{d}_y & = q\hat{y}, & \hat{d}_z & = q\hat{z} \end{align}</math> | <math>\mathbf{\hat{d}} = q \mathbf{\hat{r}} </math> | C m | [I] [T] [L] |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)