Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Graphs === <div class="floatright"> <gallery perrow="2" widths="120px" heights="120px"> File:Algebra1 fnz fig037 pc.svg|Polynomial of degree 0:<br/><small>{{math|''f''(''x'') {{=}} 2}}</small> File:Fonction de Sophie Germain.png|Polynomial of degree 1:<br/><small>{{math|''f''(''x'') {{=}} 2''x'' + 1}}</small> File:Polynomialdeg2.svg|Polynomial of degree 2:<br/><small>{{math|''f''(''x'') {{=}} ''x''<sup>2</sup> β ''x'' β 2}}<br/>{{math|{{=}} (''x'' + 1)(''x'' β 2)}}</small> File:Polynomialdeg3.svg|Polynomial of degree 3:<br/><small>{{math|''f''(''x'') {{=}} ''x''<sup>3</sup>/4 + 3''x''<sup>2</sup>/4 β 3''x''/2 β 2}}<br/>{{math|{{=}} 1/4 (''x'' + 4)(''x'' + 1)(''x'' β 2)}}</small> File:Polynomialdeg4.svg|Polynomial of degree 4:<br/><small>{{math|''f''(''x'') {{=}} 1/14 (''x'' + 4)(''x'' + 1)(''x'' β 1)(''x'' β 3) <br/>+ 0.5}}</small> File:Quintic polynomial.svg|Polynomial of degree 5:<br/><small>{{math|''f''(''x'') {{=}} 1/20 (''x'' + 4)(''x'' + 2)(''x'' + 1)(''x'' β 1)<br/>(''x'' β 3) + 2}}</small> File:Sextic Graph.svg|Polynomial of degree 6:<br/><small>{{math|''f''(''x'') {{=}} 1/100 (''x''<sup>6</sup> β 2''x'' <sup>5</sup> β 26''x''<sup>4</sup> + 28''x''<sup>3</sup>}}<br/>{{math|+ 145''x''<sup>2</sup> β 26''x'' β 80)}}</small> File:Septic graph.svg|Polynomial of degree 7:<br/><small>{{math|''f''(''x'') {{=}} (''x'' β 3)(''x'' β 2)(''x'' β 1)(''x'')(''x'' + 1)(''x'' + 2)}}<br/>{{math|(''x'' + 3)}}</small> </gallery> </div> A polynomial function in one real variable can be represented by a [[graph of a function|graph]]. <ul> <li> The graph of the zero polynomial {{block indent|{{math|1=''f''(''x'') = 0}}}} is the {{math|''x''}}-axis. </li> <li> The graph of a degree 0 polynomial {{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub>}}, where {{math|''a''<sub>0</sub> β 0}},}} is a horizontal line with {{nowrap|{{math|''y''}}-intercept {{math|''a''<sub>0</sub>}}}} </li> <li> The graph of a degree 1 polynomial (or linear function) {{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x''}}, where {{math|''a''<sub>1</sub> β 0}},}} is an oblique line with {{nowrap|{{math|''y''}}-intercept {{math|''a''<sub>0</sub>}}}} and [[slope]] {{math|''a''<sub>1</sub>}}. </li> <li> The graph of a degree 2 polynomial {{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x'' + ''a''<sub>2</sub>''x''<sup>2</sup>}}, where {{math|''a''<sub>2</sub> β 0}}}} is a [[parabola]]. </li> <li> The graph of a degree 3 polynomial {{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x'' + ''a''<sub>2</sub>''x''<sup>2</sup> + ''a''<sub>3</sub>''x''<sup>3</sup>}}, where {{math|''a''<sub>3</sub> β 0}}}} is a [[cubic equation|cubic curve]]. </li> <li> The graph of any polynomial with degree 2 or greater {{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x'' + ''a''<sub>2</sub>''x''<sup>2</sup> + β― + ''a''<sub>''n''</sub>''x''<sup>''n''</sup>}}, where {{math|''a''<sub>''n''</sub> β 0 and ''n'' β₯ 2}}}} is a continuous non-linear curve. </li> </ul> A non-constant polynomial function [[infinity#Calculus|tends to infinity]] when the variable increases indefinitely (in [[absolute value]]). If the degree is higher than one, the graph does not have any [[asymptote]]. It has two [[parabolic branch]]es with vertical direction (one branch for positive ''x'' and one for negative ''x''). Polynomial graphs are analyzed in calculus using intercepts, slopes, concavity, and end behavior.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)