Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rotation matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Rotation matrix from axis and angle==== The matrix of a proper rotation {{mvar|R}} by angle {{mvar|θ}} around the axis {{math|'''u''' {{=}} (''u<sub>x</sub>'', ''u<sub>y</sub>'', ''u<sub>z</sub>'')}}, a unit vector with {{math|''u''{{su|b=''x''|p=2}} + ''u''{{su|b=''y''|p=2}} + ''u''{{su|b=''z''|p=2}} {{=}} 1}}, is given by:<ref>{{cite journal |last1=Taylor |first1=Camillo J. |last2=Kriegman |first2=David J. |title=Minimization on the Lie Group SO(3) and Related Manifolds |journal=Technical Report No. 9405 |year=1994 |location=Yale University |url=https://www.cis.upenn.edu/~cjtaylor/PUBLICATIONS/pdfs/TaylorTR94b.pdf }}</ref> <ref> {{cite journal|first1 = V. | last1= Balakrishnan|title = How is a vector rotated? | journal = Resonance | volume =4 |issue =10|year=1999 | pages=61–68| doi= 10.1007/BF02834260|url=https://www.ias.ac.in/describe/article/reso/004/10/0061-0068}} </ref> <ref> {{cite book|first1=Adam | last1=Morawiec|title=Orientations and Rotations|year=2004 | doi=10.1007/978-3-662-09156-2|publisher=Springer| isbn=978-3-642-07386-1}} </ref> <ref> {{cite journal| first1=A. |last1=Palazzolo|title=Formalism for the rotation matrix of rotations about an arbitrary axis | journal=Am. J. Phys. | volume=44 | issue=1|pages=63–67| year=1976|doi=10.1119/1.10140|bibcode=1976AmJPh..44...63P}} </ref> :<math>R = \begin{bmatrix} u_x^2 \left(1-\cos \theta\right) + \cos \theta & u_x u_y \left(1-\cos \theta\right) - u_z \sin \theta & u_x u_z \left(1-\cos \theta\right) + u_y \sin \theta \\ u_x u_y \left(1-\cos \theta\right) + u_z \sin \theta & u_y^2\left(1-\cos \theta\right) + \cos \theta & u_y u_z \left(1-\cos \theta\right) - u_x \sin \theta \\ u_x u_z \left(1-\cos \theta\right) - u_y \sin \theta & u_y u_z \left(1-\cos \theta\right) + u_x \sin \theta & u_z^2\left(1-\cos \theta\right) + \cos \theta \end{bmatrix}.</math> A derivation of this matrix from first principles can be found in section 9.2 here.<ref>{{Cite thesis|url=https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/18050|hdl=2134/18050|title=Modelling CPV|date=January 2015|publisher=Loughborough University|type=thesis|last1=Cole|first1=Ian R.}}</ref> The basic idea to derive this matrix is dividing the problem into few known simple steps. # First rotate the given axis and the point such that the axis lies in one of the coordinate planes ({{mvar|xy}}, {{mvar|yz}} or {{mvar|zx}}) # Then rotate the given axis and the point such that the axis is aligned with one of the two coordinate axes for that particular coordinate plane ({{mvar|x}}, {{mvar|y}} or {{mvar|z}}) # Use one of the fundamental rotation matrices to rotate the point depending on the coordinate axis with which the rotation axis is aligned. # Reverse rotate the axis-point pair such that it attains the final configuration as that was in step 2 (Undoing step 2) # Reverse rotate the axis-point pair which was done in step 1 (undoing step 1) This can be written more concisely as <!--please LEAVE THE NONTRIVIAL COEFFICIENT OF THE IDENTITY ALONE. READ FOOTNOTE 4--> <ref> {{cite journal|first1=Jon|last1=Mathews|title= Coordinate-free rotation formalism|journal=Am. J. Phys. | volume =44 | number=12 | pages=121 | doi=10.1119/1.10264|year=1976|bibcode=1976AmJPh..44.1210M}} </ref> :<math>R = (\cos\theta)\,I + (\sin\theta)\,[\mathbf u]_{\times} + (1-\cos\theta)\,(\mathbf{u}\otimes\mathbf{u}),</math> where {{math|['''u''']<sub>×</sub>}} is the [[Cross product#Conversion to matrix multiplication|cross product matrix]] of {{math|'''u'''}}; the expression {{math|'''u''' ⊗ '''u'''}} is the [[outer product]], and {{mvar|I}} is the [[identity matrix]]. Alternatively, the matrix entries are: :<math>R_{jk}=\begin{cases} \cos^2\frac{\theta}{2}+\sin^2\frac{\theta}{2}\left(2u_j^2-1\right), \quad &\text{if }j=k\\ 2u_ju_k\sin^2\frac{\theta}{2}-\varepsilon_{jkl}u_l\sin\theta, \quad &\text{if }j\neq k \end{cases}</math> where {{mvar|ε<sub>jkl</sub>}} is the [[Levi-Civita symbol]] with {{math|''ε''<sub>123</sub> {{=}} 1}}. This is a matrix form of [[Rodrigues' rotation formula]], (or the equivalent, differently parametrized [[Euler–Rodrigues formula#Vector formulation|Euler–Rodrigues formula]]) with<ref group="nb">Note that :<math> \mathbf{u}\otimes\mathbf{u} = \bigl( [\mathbf u]_{\times}\bigr)^2+{\mathbf I}</math> so that, in Rodrigues' notation, equivalently, :<math> \mathbf{R} = \mathbf{I} + (\sin\theta) [\mathbf u]_{\times} + (1-\cos\theta)\bigl( [\mathbf u]_{\times}\bigr)^2.</math></ref> :<math> \mathbf{u}\otimes\mathbf{u} = \mathbf{u}\mathbf{u}^\mathsf{T} = \begin{bmatrix} u_x^2 & u_x u_y & u_x u_z \\[3pt] u_x u_y & u_y^2 & u_y u_z \\[3pt] u_x u_z & u_y u_z & u_z^2 \end{bmatrix},\qquad [\mathbf u]_{\times} = \begin{bmatrix} 0 & -u_z & u_y \\[3pt] u_z & 0 & -u_x \\[3pt] -u_y & u_x & 0 \end{bmatrix}.</math> In <math>\mathbb{R}^3</math> the rotation of a vector {{math|'''x'''}} around the axis {{math|'''u'''}} by an angle {{mvar|θ}} can be written as: :<math>R_{\mathbf{u}}(\theta)\mathbf{x}=\mathbf{u}(\mathbf{u}\cdot\mathbf{x})+\cos\left(\theta\right)(\mathbf{u}\times\mathbf{x})\times\mathbf{u}+\sin\left(\theta\right)(\mathbf{u}\times\mathbf{x})</math> or equivalently: :<math>R_{\mathbf{u}}(\theta)\mathbf{x}= \mathbf{x} \cos(\theta) + \mathbf{u}(\mathbf{x} \cdot \mathbf{u})(1- \cos(\theta)) - \mathbf{x} \times \mathbf{u} \sin{\theta}</math> This can also be written in [[Tensor|tensor notation]] as:<ref>{{cite journal|first1=T. R.|last1=Koehler | first2=S. B. |last2=Trickey|title=Euler vectors and rotations about an arbitrary axis|year=1978|journal=Am. J. Phys.|volume=46|issue=6|page=650|doi=10.1119/1.11223|bibcode=1978AmJPh..46..650K}}</ref> :<math>(R_{\mathbf{u}}(\theta)\mathbf{x})_i = (R_{\mathbf{u}}(\theta))_{ij} {\mathbf{x}}_{j} \quad \text{with} \quad (R_{\mathbf{u}}(\theta))_{ij} = \delta_{ij}\cos(\theta) + \mathbf{u}_i\mathbf{u}_j (1- \cos(\theta)) - \sin{\theta} \varepsilon_{ijk} \mathbf{u}_{k} </math> If the 3D space is right-handed and {{math|''θ'' > 0}}, this rotation will be counterclockwise when {{math|'''u'''}} points towards the observer ([[Right-hand rule]]). Explicitly, with <math>(\boldsymbol{\alpha}, \boldsymbol{\beta},\mathbf u)</math> a right-handed orthonormal basis, :<math> R_{\mathbf{u}}(\theta)\boldsymbol{\alpha}= \cos\left(\theta\right) \boldsymbol{\alpha} + \sin\left(\theta\right) \boldsymbol{\beta}, \quad R_{\mathbf{u}}(\theta)\boldsymbol{\beta}= - \sin\left(\theta\right) \boldsymbol{\alpha} + \cos\left(\theta\right) \boldsymbol{\beta}, \quad R_{\mathbf{u}}(\theta)\mathbf{u}=\mathbf{u}. </math> Note the striking ''merely apparent differences'' to the ''equivalent'' Lie-algebraic formulation [[#Exponential_map|below]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)