Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
SKI combinator calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==External links== * O'Donnell, Mike "[http://people.cs.uchicago.edu/~odonnell/Teacher/Lectures/Formal_Organization_of_Knowledge/Examples/combinator_calculus/ The SKI Combinator Calculus as a Universal System.]" * Keenan, David C. (2001) "[http://dkeenan.com/Lambda/index.htm To Dissect a Mockingbird.]" * Rathman, Chris, "[https://www.angelfire.com/tx4/cus/combinator/birds.html Combinator Birds.]" * "[https://web.archive.org/web/20081029051502/http://cstein.kings.cam.ac.uk/~chris/combinators.html "Drag 'n' Drop Combinators (Java Applet).]" * [http://www.lfcs.inf.ed.ac.uk/reports/89/ECS-LFCS-89-85/ A Calculus of Mobile Processes, Part I] (PostScript) (by Milner, Parrow, and Walker) shows a scheme for ''combinator [[graph reduction]]'' for the SKI calculus in pages 25β28. * the [https://web.archive.org/web/20131014210033/http://www.urbit.org/2013/08/22/Chapter-2-nock.html Nock programming language] may be seen as an assembly language based on SK combinator calculus in the same way that traditional assembly language is based on Turing machines. Nock instruction 2 (the "Nock operator") is the S combinator and Nock instruction 1 is the K combinator. The other primitive instructions in Nock (instructions 0,3,4,5, and the pseudo-instruction "implicit cons") are not necessary for universal computation, but make programming more convenient by providing facilities for dealing with binary tree data structures and arithmetic; Nock also provides 5 more instructions (6,7,8,9,10) that could have been built out of these primitives. [[Category:Lambda calculus]] [[Category:Combinatory logic]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)