Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Semisimple Lie algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Compact case === Suppose <math>\mathfrak g</math> is a compact form and <math>\mathfrak h \subset \mathfrak g</math> a maximal abelian subspace. One can show (for example, from the fact <math>\mathfrak g</math> is the Lie algebra of a compact Lie group) that <math>\operatorname{ad}(\mathfrak h)</math> consists of skew-Hermitian matrices, diagonalizable over <math>\mathbb{C}</math> with imaginary eigenvalues. Hence, <math>\mathfrak h^{\mathbb{C}}</math> is a [[Cartan subalgebra]] of <math>\mathfrak{g}^{\mathbb{C}}</math> and there results in the root space decomposition (cf. [[#Structure]]) :<math>\mathfrak{g}^{\mathbb{C}} = \mathfrak{h}^{\mathbb{C}} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}</math> where each <math>\alpha \in \Phi</math> is real-valued on <math>i \mathfrak{h}</math>; thus, can be identified with a real-linear functional on the real vector space <math>i \mathfrak{h}</math>. For example, let <math>\mathfrak{g} = \mathfrak{su}(n)</math> and take <math>\mathfrak h \subset \mathfrak g</math> the subspace of all diagonal matrices. Note <math>\mathfrak{g}^{\mathbb{C}} = \mathfrak{sl}_n \mathbb{C}</math>. Let <math>e_i</math> be the linear functional on <math>\mathfrak{h}^{\mathbb{C}}</math> given by <math>e_i(H) = h_i</math> for <math>H = \operatorname{diag}(h_1, \dots, h_n)</math>. Then for each <math>H \in \mathfrak{h}^{\mathbb{C}}</math>, :<math>[H, E_{ij}] = (e_i(H) - e_j(H)) E_{ij}</math> where <math>E_{ij}</math> is the matrix that has 1 on the <math>(i, j)</math>-th spot and zero elsewhere. Hence, each root <math>\alpha</math> is of the form <math>\alpha = e_i - e_j, i \ne j</math> and the root space decomposition is the decomposition of matrices:<ref>{{harvnb|Knapp|2002|loc=Ch. IV, Β§ 1, Example 1.}}</ref> :<math>\mathfrak{g}^{\mathbb{C}} = \mathfrak{h}^{\mathbb{C}} \oplus \bigoplus_{i \ne j} \mathbb{C} E_{ij}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)