Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Simulated annealing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Cooling schedule=== The physical analogy that is used to justify simulated annealing assumes that the cooling rate is low enough for the probability distribution of the current state to be near [[thermodynamic equilibrium]] at all times. Unfortunately, the ''relaxation time''—the time one must wait for the equilibrium to be restored after a change in temperature—strongly depends on the "topography" of the energy function and on the current temperature. In the simulated annealing algorithm, the relaxation time also depends on the candidate generator, in a very complicated way. Note that all these parameters are usually provided as [[procedural parameter|black box functions]] to the simulated annealing algorithm. Therefore, the ideal cooling rate cannot be determined beforehand and should be empirically adjusted for each problem. [[Adaptive simulated annealing]] algorithms address this problem by connecting the cooling schedule to the search progress. Other adaptive approaches such as Thermodynamic Simulated Annealing,<ref>{{cite journal |doi=10.1016/j.physleta.2003.08.070 |title=Placement by thermodynamic simulated annealing |year=2003 |last1=De Vicente |first1=Juan |last2=Lanchares |first2=Juan |last3=Hermida |first3=Román |journal=Physics Letters A |volume=317 |issue=5–6 |pages=415–423|bibcode=2003PhLA..317..415D }}</ref> automatically adjusts the temperature at each step based on the energy difference between the two states, according to the laws of thermodynamics.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)