Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectral theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Unbounded self-adjoint operators == Many important linear operators which occur in [[Mathematical analysis|analysis]], such as [[differential operators]], are [[unbounded operator|unbounded]]. There is also a spectral theorem for [[self-adjoint operator]]s that applies in these cases. To give an example, every constant-coefficient differential operator is unitarily equivalent to a multiplication operator. Indeed, the unitary operator that implements this equivalence is the [[Fourier transform]]; the multiplication operator is a type of [[Multiplier (Fourier analysis)|Fourier multiplier]]. In general, spectral theorem for self-adjoint operators may take several equivalent forms.<ref>See Section 10.1 of {{harvnb|Hall|2013}}</ref> Notably, all of the formulations given in the previous section for bounded self-adjoint operators—the projection-valued measure version, the multiplication-operator version, and the direct-integral version—continue to hold for unbounded self-adjoint operators, with small technical modifications to deal with domain issues. Specifically, the only reason the multiplication operator <math>A</math> on <math>L^2([0,1])</math> is bounded, is due to the choice of domain <math>[0,1]</math>. The same operator on, e.g., <math>L^2(\mathbb{R})</math> would be unbounded. The notion of "generalized eigenvectors" naturally extends to unbounded self-adjoint operators, as they are characterized as [[Probability_amplitude#Normalization|non-normalizable]] eigenvectors. Contrary to the case of [[Spectral_theorem#Spectral_subspaces_and_projection-valued_measures|almost eigenvectors]], however, the eigenvalues can be real or complex and, even if they are real, do not necessarily belong to the spectrum. Though, for self-adjoint operators there always exist a real subset of "generalized eigenvalues" such that the corresponding set of eigenvectors is [[Total_set|complete]].{{sfn|de la Madrid Modino|2001|pp=95-97}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)