Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Unbounded operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== References == === Citations === {{reflist|22em}} === Bibliography === {{Refbegin}} * {{ citation | last1=Berezansky| first1=Y.M. | last2=Sheftel| first2=Z.G. | last3=Us| first3=G.F.| title=Functional analysis | volume=II | year=1996| publisher=Birkhäuser }} (see Chapter 12 "General theory of unbounded operators in Hilbert spaces"). * {{ citation | last1=Brezis | first1=Haïm | title=Analyse fonctionnelle — Théorie et applications | year=1983| publisher=Mason |place=Paris |language=fr}} * {{springer|title=Unbounded operator|id=p/u095090}} <!--Hazewinkel, Michiel, ed. (2001) --> * {{ citation | last=Hall | first=B.C. | title=Quantum Theory for Mathematicians | year=2013 | series=Graduate Texts in Mathematics |volume=267 |chapter=Chapter 9. Unbounded Self-adjoint Operators |publisher=Springer|isbn=978-1461471158}} * {{ citation | last=Kato | first=Tosio | title=Perturbation theory for linear operators | year=1995 | series=Classics in Mathematics |chapter=Chapter 5. Operators in Hilbert Space |publisher=Springer-Verlag |isbn=3-540-58661-X}} * {{Cite book|title=Introductory Functional Analysis With Applications|last=Kreyszig|first=Erwin|publisher=John Wiley & Sons. Inc. | year=1978 | isbn=0-471-50731-8 | location=USA }} * {{ citation | last=Pedersen | first=Gert K. | title=Analysis now | year=1989 | publisher=Springer }} (see Chapter 5 "Unbounded operators"). * {{ citation | last1=Reed | first1=Michael | author1-link=Michael C. Reed | last2=Simon | first2=Barry | author2-link=Barry Simon | title=Methods of Modern Mathematical Physics | edition=revised and enlarged | volume=1: Functional Analysis | year=1980 | publisher=Academic Press }} (see Chapter 8 "Unbounded operators"). * {{cite book|last=Stone|first=Marshall Harvey|title=Linear Transformations in Hilbert Space and Their Applications to Analysis. Reprint of the 1932 Ed|url=https://books.google.com/books?id=9n2CtOe9FLIC| year=1932| publisher=American Mathematical Society | isbn=978-0-8218-7452-3}} * {{cite book| last = Teschl| given = Gerald|author-link=Gerald Teschl| title=Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators| publisher=[[American Mathematical Society]]| place = [[Providence, Rhode Island|Providence]]| year=2009 |url=https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/ |isbn=978-0-8218-4660-5 }} * {{citation|last=von Neumann |first =J. |year=1930|title=Allgemeine Eigenwerttheorie Hermitescher Functionaloperatoren (General Eigenvalue Theory of Hermitian Functional Operators) |journal=Mathematische Annalen |volume=102 |issue=1 |doi=10.1007/BF01782338|s2cid =121249803 }} * {{citation|last=von Neumann |first=J. |year=1932 |title=Über Adjungierte Funktionaloperatore (On Adjoint Functional Operators) |journal=Annals of Mathematics |series=Second Series |volume=33 |doi=10.2307/1968331 |issue=2 |jstor=1968331}} * {{ citation | last1=Yoshida| first1=Kôsaku | title=Functional Analysis | year=1980| publisher=Springer |edition=sixth}} {{refend}} {{PlanetMath attribution|id=4526|title=Closed operator}} {{Spectral theory}} {{Hilbert space}} {{Functional analysis}} {{Boundedness and bornology}} {{DEFAULTSORT:Unbounded Operator}} [[Category:Linear operators]] [[Category:Operator theory]] [[de:Linearer Operator#Unbeschränkte lineare Operatoren]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)