Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Adjugate matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Higher adjugates == Let {{math|'''A'''}} be an {{math|''n'' Γ ''n''}} matrix, and fix {{math|''r'' ≥ 0}}. The '''{{math|''r''}}th higher adjugate''' of {{math|'''A'''}} is an <math display="inline">\binom{n}{r} \!\times\! \binom{n}{r}</math> matrix, denoted {{math|adj<sub>''r''</sub> '''A'''}}, whose entries are indexed by size {{math|''r''}} [[subset]]s {{math|''I''}} and {{math|''J''}} of {{math|{1, ..., ''m''<nowiki>}</nowiki>}} {{Citation needed|date=November 2023}}. Let {{math|''I''{{i sup|c}}}} and {{math|''J''{{i sup|c}}}} denote the [[complement (set theory)|complements]] of {{math|''I''}} and {{math|''J''}}, respectively. Also let <math>\mathbf{A}_{I^c, J^c}</math> denote the submatrix of {{math|'''A'''}} containing those rows and columns whose indices are in {{math|''I''{{i sup|c}}}} and {{math|''J''{{i sup|c}}}}, respectively. Then the {{math|(''I'', ''J'')}} entry of {{math|adj<sub>''r''</sub> '''A'''}} is :<math>(-1)^{\sigma(I) + \sigma(J)}\det \mathbf{A}_{J^c, I^c},</math> where {{math|Ο(''I'')}} and {{math|Ο(''J'')}} are the sum of the elements of {{math|''I''}} and {{math|''J''}}, respectively. Basic properties of higher adjugates include {{Citation needed|date=November 2023}}: * {{math|1=adj<sub>0</sub>('''A''') = det '''A'''}}. * {{math|1=adj<sub>1</sub>('''A''') = adj '''A'''}}. * {{math|1=adj<sub>''n''</sub>('''A''') = 1}}. * {{math|1=adj<sub>''r''</sub>('''BA''') = adj<sub>''r''</sub>('''A''') adj<sub>''r''</sub>('''B''')}}. * <math>\operatorname{adj}_r(\mathbf{A})C_r(\mathbf{A}) = C_r(\mathbf{A})\operatorname{adj}_r(\mathbf{A}) = (\det \mathbf{A})I_{\binom{n}{r}}</math>, where {{math|''C''<sub>''r''</sub>('''A''')}} denotes the {{math|''r''}}th [[compound matrix]]. Higher adjugates may be defined in abstract algebraic terms in a similar fashion to the usual adjugate, substituting <math>\wedge^r V</math> and <math>\wedge^{n-r} V</math> for <math>V</math> and <math>\wedge^{n-1} V</math>, respectively.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)