Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Analytic number theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Dirichlet series === {{main|Dirichlet series}} One of the most useful tools in multiplicative number theory are [[Dirichlet series]], which are functions of a complex variable defined by an infinite series of the form :<math>f(s)=\sum_{n=1}^\infty a_nn^{-s}.</math> Depending on the choice of coefficients <math>a_n</math>, this series may converge everywhere, nowhere, or on some half plane. In many cases, even where the series does not converge everywhere, the holomorphic function it defines may be analytically continued to a meromorphic function on the entire complex plane. The utility of functions like this in multiplicative problems can be seen in the formal identity :<math>\left(\sum_{n=1}^\infty a_nn^{-s}\right)\left(\sum_{n=1}^\infty b_nn^{-s}\right)=\sum_{n=1}^\infty\left(\sum_{k\ell=n}a_kb_\ell\right)n^{-s};</math> hence the coefficients of the product of two Dirichlet series are the [[multiplicative convolution]]s of the original coefficients. Furthermore, techniques such as [[partial summation]] and [[Tauberian theorem]]s can be used to get information about the coefficients from analytic information about the Dirichlet series. Thus a common method for estimating a multiplicative function is to express it as a Dirichlet series (or a product of simpler Dirichlet series using convolution identities), examine this series as a complex function and then convert this analytic information back into information about the original function.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)