Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Fourier series== The [[Fourier series]] of the Bernoulli polynomials is also a [[Dirichlet series]], given by the expansion <math display="block">B_n(x) = -\frac{n!}{(2\pi i)^n}\sum_{k\not=0 }\frac{e^{2\pi ikx}}{k^n}= -2 n! \sum_{k=1}^{\infty} \frac{\cos\left(2 k \pi x- \frac{n \pi} 2 \right)}{(2 k \pi)^n}.</math> Note the simple large ''n'' limit to suitably scaled trigonometric functions. This is a special case of the analogous form for the [[Hurwitz zeta function]] <math display="block">B_n(x) = -\Gamma(n+1) \sum_{k=1}^\infty \frac{ \exp (2\pi ikx) + e^{i\pi n} \exp (2\pi ik(1-x)) } { (2\pi ik)^n }. </math> This expansion is valid only for {{math|0 β€ ''x'' β€ 1}} when {{math|''n'' β₯ 2}} and is valid for {{math|0 < ''x'' < 1}} when {{math|1=''n'' = 1}}. The Fourier series of the Euler polynomials may also be calculated. Defining the functions <math display="block">\begin{align} C_\nu(x) &= \sum_{k=0}^\infty \frac {\cos((2k+1)\pi x)} {(2k+1)^\nu} \\[3mu] S_\nu(x) &= \sum_{k=0}^\infty \frac {\sin((2k+1)\pi x)} {(2k+1)^\nu} \end{align}</math> for <math>\nu > 1</math>, the Euler polynomial has the Fourier series <math display="block">\begin{align} C_{2n}(x) &= \frac{\left(-1\right)^n}{4(2n-1)!} \pi^{2n} E_{2n-1} (x) \\[1ex] S_{2n+1}(x) &= \frac{\left(-1\right)^n}{4(2n)!} \pi^{2n+1} E_{2n} (x). \end{align}</math> Note that the <math>C_\nu</math> and <math>S_\nu</math> are odd and even, respectively:<math display="block">\begin{align} C_\nu(x) &= -C_\nu(1-x) \\ S_\nu(x) &= S_\nu(1-x). \end{align}</math> They are related to the [[Legendre chi function]] <math>\chi_\nu</math> as <math display="block">\begin{align} C_\nu(x) &= \operatorname{Re} \chi_\nu (e^{ix}) \\ S_\nu(x) &= \operatorname{Im} \chi_\nu (e^{ix}). \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)