Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Limitations on the four types of generating functions === Considering <math>G_{2}(\mathbf{q}, \mathbf{P}, t)</math> as an example, using generating function of second kind: <math display="inline">{p}_i = \frac{\partial G_{2}}{\partial {q}_i} </math> and <math display="inline">{Q}_i = \frac{\partial G_{2}}{\partial {P}_i} </math>, the first set of equations consisting of variables <math display="inline">\mathbf{p} </math>, <math display="inline">\mathbf{q} </math> and <math display="inline">\mathbf{P} </math> has to be inverted to get <math display="inline">\mathbf{P}(\mathbf q, \mathbf p) </math>. This process is possible when the matrix defined by <math display="inline">a_{ij}=\frac{\partial {p}_i(\mathbf q,\mathbf P)}{\partial P_j} </math> is non-singular using the [[inverse function theorem]], and can be restated as the following relation.<ref>{{Harvnb|Johns|2005|p=438}}</ref> <math display="block">\left|\begin{array}{l l l}{{\displaystyle{\frac{\partial^{2}G_{2}}{\partial P_{1}\partial q_{1}}}}}&{{\cdots}}&{{\displaystyle{\frac{\partial^{2}G_{2}}{\partial P_{1}\partial q_{n}}}}}\\ {\quad \vdots} & {\ddots}&{\quad \vdots}\\{{\displaystyle{\frac{\partial^{2}G_{2}}{\partial P_{n}\partial q_{1}}}}}&{{\cdots}}&{{\displaystyle{\frac{\partial^{2}G_{2}}{\partial P_{n}\partial q_{n}}}}}\end{array}\right|{\neq0}</math> Hence, restrictions are placed on generating functions to have the matrices: <math display="inline">\left[\frac{\partial^2 G_1}{\partial Q_j\partial q_i} \right] </math>, <math display="inline">\left[\frac{\partial^2 G_2}{\partial P_j\partial q_i} \right] </math>, <math display="inline">\left[\frac{\partial^2 G_3}{\partial p_j\partial Q_i} \right] </math> and <math display="inline">\left[\frac{\partial^2 G_4}{\partial p_j\partial P_i} \right] </math>, being non-singular.<ref>{{Harvnb|Lurie|2002|p=547}}</ref><ref>{{Harvnb|Sudarshan|Mukunda|2010|p=58}}</ref> These conditions also correspond to local invertibility of the coordinates. From these restrictions, it can be stated that type 1 and type 4 generating functions always have a non-singular <math display="inline">\left[\frac{\partial Q_i(\mathbf q,\mathbf p)}{\partial p_j} \right] </math> matrix whereas type 2 and type 3 generating functions always have a non-singular <math display="inline">\left[\frac{\partial P_i(\mathbf q,\mathbf p)}{\partial p_j} \right] </math> matrix. Hence, the canonical transformations resulting from these four generating functions alone are not completely general.<ref>{{Harvnb|Johns|2005|p=437-439}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)