Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chi-squared distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Related distributions == {{More citations needed section|date=September 2011}} * As <math>k\to\infty</math>, <math> (\chi^2_k-k)/\sqrt{2k} ~ \xrightarrow{d}\ N(0,1) \,</math> ([[normal distribution]]) * <math> \chi_k^2 \sim {\chi'}^2_k(0)</math> ([[noncentral chi-squared distribution]] with non-centrality parameter <math> \lambda = 0 </math>) * If <math>Y \sim \mathrm{F}(\nu_1, \nu_2)</math> then <math>X = \lim_{\nu_2 \to \infty} \nu_1 Y</math> has the chi-squared distribution <math>\chi^2_{\nu_{1}}</math> :*As a special case, if <math>Y \sim \mathrm{F}(1, \nu_2)\,</math> then <math>X = \lim_{\nu_2 \to \infty} Y\,</math> has the chi-squared distribution <math>\chi^2_{1}</math> * <math> \|\boldsymbol{N}_{i=1,\ldots,k} (0,1) \|^2 \sim \chi^2_k </math> (The squared [[Norm (mathematics)|norm]] of ''k'' standard normally distributed variables is a chi-squared distribution with ''k'' [[degrees of freedom (statistics)|degrees of freedom]]) * If <math>X \sim \chi^2_\nu\,</math> and <math>c>0 \,</math>, then <math>cX \sim \Gamma(k=\nu/2, \theta=2c)\,</math>. ([[gamma distribution]]) * If <math>X \sim \chi^2_k</math> then <math>\sqrt{X} \sim \chi_k</math> ([[chi distribution]]) * If <math>X \sim \chi^2_2</math>, then <math>X \sim \operatorname{exp}(1/2)</math> is an [[exponential distribution]]. (See [[gamma distribution]] for more.) * If <math>X \sim \chi^2_{2k}</math>, then <math>X \sim \operatorname{Erlang}(k, 1/2)</math> is an [[Erlang distribution]]. * If <math> X \sim \operatorname{Erlang}(k,\lambda)</math>, then <math> 2\lambda X\sim \chi^2_{2k}</math> * If <math>X \sim \operatorname{Rayleigh}(1)\,</math> ([[Rayleigh distribution]]) then <math>X^2 \sim \chi^2_2\,</math> * If <math>X \sim \operatorname{Maxwell}(1)\,</math> ([[Maxwell distribution]]) then <math>X^2 \sim \chi^2_3\,</math> * If <math>X \sim \chi^2_\nu</math> then <math>\tfrac{1}{X} \sim \operatorname{Inv-}\chi^2_\nu\, </math> ([[Inverse-chi-squared distribution]]) * The chi-squared distribution is a special case of type III [[Pearson distribution]] * If <math>X \sim \chi^2_{\nu_1}\,</math> and <math>Y \sim \chi^2_{\nu_2}\,</math> are independent then <math>\tfrac{X}{X+Y} \sim \operatorname{Beta}(\tfrac{\nu_1}{2}, \tfrac{\nu_2}{2})\,</math> ([[beta distribution]]) * If <math> X \sim \operatorname{U}(0,1)\, </math> ([[Uniform distribution (continuous)|uniform distribution]]) then <math> -2\log(X) \sim \chi^2_2\,</math> * If <math>X_i \sim \operatorname{Laplace}(\mu,\beta)\,</math> then <math>\sum_{i=1}^n \frac{2 |X_i-\mu|}{\beta} \sim \chi^2_{2n}\,</math> * If <math>X_i</math> follows the [[generalized normal distribution]] (version 1) with parameters <math>\mu,\alpha,\beta</math> then <math>\sum_{i=1}^n \frac{2 |X_i-\mu|^\beta}{\alpha} \sim \chi^2_{2n/\beta}\,</math> <ref>{{cite journal |last= Bäckström |first= T. |author2=Fischer, J. |date=January 2018|title= Fast Randomization for Distributed Low-Bitrate Coding of Speech and Audio|journal= IEEE/ACM Transactions on Audio, Speech, and Language Processing |volume= 26|issue= 1|pages= 19–30|doi= 10.1109/TASLP.2017.2757601|s2cid= 19777585 |url= https://research.aalto.fi/files/27158975/ELEC_backstrom_et_al_Fast_randomization.pdf }}</ref> * The chi-squared distribution is a transformation of [[Pareto distribution]] * [[Student's t-distribution]] is a transformation of chi-squared distribution * [[Student's t-distribution]] can be obtained from chi-squared distribution and [[normal distribution]] * The [[noncentral beta distribution]] can be obtained as a transformation of chi-squared distribution and [[noncentral chi-squared distribution]] * The [[noncentral t-distribution]] can be obtained from normal distribution and chi-squared distribution A chi-squared variable with <math>k</math> degrees of freedom is defined as the sum of the squares of <math>k</math> independent [[standard normal]] random variables. If <math>Y</math> is a <math>k</math>-dimensional Gaussian random vector with mean vector <math>\mu</math> and rank <math>k</math> covariance matrix <math>C</math>, then <math>X = (Y-\mu )^{T}C^{-1}(Y-\mu)</math> is chi-squared distributed with <math>k</math> degrees of freedom. The sum of squares of [[statistically independent]] unit-variance Gaussian variables which do ''not'' have mean zero yields a generalization of the chi-squared distribution called the [[noncentral chi-squared distribution]]. If <math>Y</math> is a vector of <math>k</math> [[i.i.d.]] standard normal random variables and <math>A</math> is a <math>k\times k</math> [[symmetric matrix|symmetric]], [[idempotent matrix]] with [[rank (linear algebra)|rank]] <math>k-n</math>, then the [[quadratic form]] <math>Y^TAY</math> is chi-square distributed with <math>k-n</math> degrees of freedom. If <math>\Sigma</math> is a <math>p\times p</math> positive-semidefinite covariance matrix with strictly positive diagonal entries, then for <math>X\sim N(0,\Sigma)</math> and <math>w</math> a random <math>p</math>-vector independent of <math>X</math> such that <math>w_1+\cdots+w_p=1</math> and <math>w_i\geq 0, i=1,\ldots,p,</math> then : <math>\frac{1}{\left(\frac{w_1}{X_1},\ldots,\frac{w_p}{X_p}\right)\Sigma\left(\frac{w_1}{X_1},\ldots,\frac{w_p}{X_p}\right)^\top} \sim \chi_1^2.</math><ref name="Pillai-2016" /> The chi-squared distribution is also naturally related to other distributions arising from the Gaussian. In particular, * <math>Y</math> is [[F-distribution|F-distributed]], <math>Y \sim F(k_1, k_2)</math> if <math>Y = \frac{ {X_1}/{k_1} }{ {X_2}/{k_2} }</math>, where <math>X_1 \sim \chi^2_{k_1}</math> and <math>X_2 \sim \chi^2_{k_2}</math> are statistically independent. * If <math>X_1 \sim \chi^2_{k_1}</math> and <math>X_2 \sim \chi^2_{k_2}</math> are statistically independent, then <math>X_1 + X_2\sim \chi^2_{k_1+k_2}</math>. If <math>X_1</math> and <math>X_2</math> are not independent, then <math>X_1+X_2</math> is not chi-square distributed. === Generalizations === The chi-squared distribution is obtained as the sum of the squares of {{mvar|k}} independent, zero-mean, unit-variance Gaussian random variables. Generalizations of this distribution can be obtained by summing the squares of other types of Gaussian random variables. Several such distributions are described below. === Linear combination === If <math>X_1,\ldots,X_n</math> are chi square random variables and <math>a_1,\ldots,a_n\in\mathbb{R}_{>0}</math>, then the distribution of <math>X=\sum_{i=1}^n a_i X_i</math> is a special case of a [[Generalized chi-squared distribution|Generalized Chi-squared Distribution]]. A closed expression for this distribution is not known. It may be, however, approximated efficiently using the [[Characteristic function (probability theory)#Properties|property of characteristic functions]] of chi-square random variables.<ref>{{cite journal |first=J. |last=Bausch |title=On the Efficient Calculation of a Linear Combination of Chi-Square Random Variables with an Application in Counting String Vacua |journal=J. Phys. A: Math. Theor. |volume=46 |issue=50 |year=2013 |pages=505202 |doi=10.1088/1751-8113/46/50/505202 |bibcode=2013JPhA...46X5202B |arxiv=1208.2691 |s2cid=119721108 }}</ref> === Chi-squared distributions === ==== Noncentral chi-squared distribution ==== {{Main|Noncentral chi-squared distribution}} The noncentral chi-squared distribution is obtained from the sum of the squares of independent Gaussian random variables having unit variance and ''nonzero'' means. ==== Generalized chi-squared distribution ==== {{Main|Generalized chi-squared distribution}} The generalized chi-squared distribution is obtained from the quadratic form {{math|z'Az}} where {{mvar|z}} is a zero-mean Gaussian vector having an arbitrary covariance matrix, and {{mvar|A}} is an arbitrary matrix. === Gamma, exponential, and related distributions === The chi-squared distribution <math>X \sim \chi_k^2</math> is a special case of the [[gamma distribution]], in that <math>X \sim \Gamma \left(\frac{k}2,\frac{1}2\right)</math> using the rate parameterization of the gamma distribution (or <math>X \sim \Gamma \left(\frac{k}2,2 \right)</math> using the scale parameterization of the gamma distribution) where {{mvar|k}} is an integer. Because the [[exponential distribution]] is also a special case of the gamma distribution, we also have that if <math>X \sim \chi_2^2</math>, then <math>X\sim \operatorname{exp}\left(\frac 1 2\right)</math> is an [[exponential distribution]]. The [[Erlang distribution]] is also a special case of the gamma distribution and thus we also have that if <math>X \sim\chi_k^2</math> with even <math>k</math>, then <math>X</math> is Erlang distributed with shape parameter <math>k/2</math> and scale parameter <math>1/2</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)