Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cholesky decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The Cholesky algorithm === The '''Cholesky algorithm''', used to calculate the decomposition matrix {{math|'''L'''}}, is a modified version of [[Gaussian elimination]]. The recursive algorithm starts with {{math|1=''i'' := 1}} and :{{math|1='''A'''<sup>(1)</sup> := '''A'''}}. At step {{mvar|i}}, the matrix {{math|'''A'''<sup>(''i'')</sup>}} has the following form: <math display=block>\mathbf{A}^{(i)}= \begin{pmatrix} \mathbf{I}_{i-1} & 0 & 0 \\ 0 & a_{i,i} & \mathbf{b}_{i}^{*} \\ 0 & \mathbf{b}_{i} & \mathbf{B}^{(i)} \end{pmatrix}, </math> where {{math|'''I'''<sub>''i''β1</sub>}} denotes the [[identity matrix]] of dimension {{math|''i'' β 1}}. If the matrix {{math|'''L'''<sub>''i''</sub>}} is defined by <math display=block>\mathbf{L}_{i}:= \begin{pmatrix} \mathbf{I}_{i-1} & 0 & 0 \\ 0 & \sqrt{a_{i,i}} & 0 \\ 0 & \frac{1}{\sqrt{a_{i,i}}} \mathbf{b}_{i} & \mathbf{I}_{n-i} \end{pmatrix}, </math> (note that {{math|''a''<sub>''i,i''</sub> > 0}} since {{math|'''A'''<sup>(''i'')</sup>}} is positive definite), then {{math|'''A'''<sup>(''i'')</sup>}} can be written as <math display=block>\mathbf{A}^{(i)} = \mathbf{L}_{i} \mathbf{A}^{(i+1)} \mathbf{L}_{i}^{*}</math> where <math display=block>\mathbf{A}^{(i+1)}= \begin{pmatrix} \mathbf{I}_{i-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \mathbf{B}^{(i)} - \frac{1}{a_{i,i}} \mathbf{b}_{i} \mathbf{b}_{i}^{*} \end{pmatrix}.</math> Note that {{math|'''b'''<sub>''i''</sub> '''b'''<sub>''i''</sub>*}} is an [[outer product]], therefore this algorithm is called the ''outer-product version'' in (Golub & Van Loan). This is repeated for {{mvar|i}} from 1 to {{mvar|n}}. After {{mvar|n}} steps, {{math|1='''A'''<sup>(''n''+1)</sup> = '''I'''}} is obtained, and hence, the lower triangular matrix {{mvar|L}} sought for is calculated as <math display=block>\mathbf{L} := \mathbf{L}_{1} \mathbf{L}_{2} \dots \mathbf{L}_{n}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)