Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Correlation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Bivariate normal distribution== If a pair <math>\ (X,Y)\ </math> of random variables follows a [[bivariate normal distribution]], the conditional mean <math>\operatorname{\boldsymbol\mathcal E}(X \mid Y)</math> is a linear function of <math>Y</math>, and the conditional mean <math>\operatorname{\boldsymbol\mathcal E}(Y \mid X)</math> is a linear function of <math>\ X ~.</math> The correlation coefficient <math>\ \rho_{X,Y}\ </math> between <math>\ X\ </math> and <math>\ Y\ ,</math> and the [[Marginal distribution|marginal]] means and variances of <math>\ X\ </math> and <math>\ Y\ </math> determine this linear relationship: :<math>\operatorname{\boldsymbol\mathcal E}(Y \mid X ) = \operatorname{\boldsymbol\mathcal E}(Y) + \rho_{X,Y} \cdot \sigma_Y \cdot \frac{\ X-\operatorname{\boldsymbol\mathcal E}(X)\ }{ \sigma_X }\ ,</math> where <math>\operatorname{\boldsymbol\mathcal E}(X)</math> and <math>\operatorname{\boldsymbol\mathcal E}(Y)</math> are the expected values of <math>\ X\ </math> and <math>\ Y\ ,</math> respectively, and <math>\ \sigma_X\ </math> and <math>\ \sigma_Y\ </math> are the standard deviations of <math>\ X\ </math> and <math>\ Y\ ,</math> respectively. The empirical correlation <math>r</math> is an [[Estimation|estimate]] of the correlation coefficient <math>\ \rho ~.</math> A distribution estimate for <math>\ \rho\ </math> is given by : <math display="block">\pi ( \rho \mid r ) = \frac{\ \Gamma(N)\ }{\ \sqrt{ 2\pi\ } \cdot \Gamma( N - \tfrac{\ 1\ }{ 2 } )\ } \cdot \bigl( 1 - r^2 \bigr)^{ \frac{\ N\ - 2\ }{ 2 } } \cdot \bigl( 1 - \rho^2 \bigr)^{ \frac{\ N - 3\ }{ 2 } } \cdot \bigl( 1 - r \rho \bigr)^{ - N + \frac{\ 3 \ }{ 2 } } \cdot F_\mathsf{Hyp} \left(\ \tfrac{\ 3\ }{ 2 } , -\tfrac{\ 1\ }{ 2 } ; N - \tfrac{\ 1\ }{ 2 } ; \frac{\ 1 + r \rho\ }{ 2 }\ \right)\ </math> where <math>\ F_\mathsf{Hyp} \ </math> is the [[Gaussian hypergeometric function]]. This density is both a Bayesian [[posterior probability|posterior]] density and an exact optimal [[confidence distribution]] density.<ref>{{cite journal |last=Taraldsen |first=Gunnar |date=2021 |title=The confidence density for correlation |journal=Sankhya A |volume=85 |pages=600β616 |lang=en |s2cid=244594067 |issn=0976-8378 |doi=10.1007/s13171-021-00267-y |doi-access=free|hdl=11250/3133125 |hdl-access=free }}</ref><ref>{{cite report |last=Taraldsen |first=Gunnar |date=2020 |title=Confidence in correlation |lang=en |type=preprint |doi=10.13140/RG.2.2.23673.49769 |website=researchgate.net |url=http://rgdoi.net/10.13140/RG.2.2.23673.49769}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)