Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covariance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Cross-covariance matrix of real random vectors === {{main|Cross-covariance matrix}} For real [[random vector]]s <math>\mathbf{X} \in \mathbb{R}^m</math> and <math>\mathbf{Y} \in \mathbb{R}^n</math>, the <math>m \times n</math> cross-covariance matrix is equal to<ref name=Gubner/>{{rp|p=336}} {{Equation box 1 |indent = : |title = |equation = {{NumBlk||<math>\begin{align} \operatorname{K}_{\mathbf{X}\mathbf{Y}} = \operatorname{cov}(\mathbf{X},\mathbf{Y}) &= \operatorname{E}\left[ (\mathbf{X} - \operatorname{E}[\mathbf{X}]) (\mathbf{Y} - \operatorname{E}[\mathbf{Y}])^\mathrm{T} \right] \\ &= \operatorname{E}\left[\mathbf{X} \mathbf{Y}^\mathrm{T}\right] - \operatorname{E}[\mathbf{X}]\operatorname{E}[\mathbf{Y}]^\mathrm{T} \end{align}</math>|{{EquationRef|Eq.2}}}} |cellpadding = 6 |border |border colour = #0073CF |background colour = #F5FFFA}} where <math>\mathbf{Y}^{\mathrm T}</math> is the [[transpose]] of the vector (or matrix) <math>\mathbf{Y}</math>. The <math>(i,j)</math>-th element of this matrix is equal to the covariance <math>\operatorname{cov}(X_i,Y_j)</math> between the {{math|''i''}}-th scalar component of <math>\mathbf{X}</math> and the {{math|''j''}}-th scalar component of <math>\mathbf{Y}</math>. In particular, <math>\operatorname{cov}(\mathbf{Y},\mathbf{X})</math> is the [[transpose]] of <math>\operatorname{cov}(\mathbf{X},\mathbf{Y})</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)