Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covariance matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Which matrices are covariance matrices?== From basic property 4. above, let <math>\mathbf{b}</math> be a <math>(p \times 1)</math> real-valued vector, then <math display="block">\operatorname{var}(\mathbf{b}^\mathsf{T}\mathbf{X}) = \mathbf{b}^\mathsf{T} \operatorname{var}(\mathbf{X}) \mathbf{b},\,</math> which must always be nonnegative, since it is the [[variance#Properties|variance]] of a real-valued random variable, so a covariance matrix is always a [[positive-semidefinite matrix]]. The above argument can be expanded as follows:<math display="block"> \begin{align} & w^\mathsf{T} \operatorname{E} \left[(\mathbf{X} - \operatorname{E}[\mathbf{X}]) (\mathbf{X} - \operatorname{E}[\mathbf{X}])^\mathsf{T}\right] w = \operatorname{E} \left[w^\mathsf{T}(\mathbf{X} - \operatorname{E}[\mathbf{X}]) (\mathbf{X} - \operatorname{E}[\mathbf{X}])^\mathsf{T}w\right] \\ &= \operatorname{E} \big[\big( w^\mathsf{T}(\mathbf{X} - \operatorname{E}[\mathbf{X}]) \big)^2 \big] \geq 0, \end{align} </math>where the last inequality follows from the observation that <math>w^\mathsf{T}(\mathbf{X} - \operatorname{E}[\mathbf{X}])</math> is a scalar. Conversely, every symmetric positive semi-definite matrix is a covariance matrix. To see this, suppose <math>M</math> is a <math>p \times p</math> symmetric positive-semidefinite matrix. From the finite-dimensional case of the [[spectral theorem]], it follows that <math>M</math> has a nonnegative symmetric [[Square root of a matrix|square root]], which can be denoted by '''M'''<sup>1/2</sup>. Let <math>\mathbf{X}</math> be any <math>p \times 1</math> column vector-valued random variable whose covariance matrix is the <math>p \times p</math> identity matrix. Then <math display="block">\operatorname{var}(\mathbf{M}^{1/2} \mathbf{X}) = \mathbf{M}^{1/2} \, \operatorname{var}(\mathbf{X}) \, \mathbf{M}^{1/2} = \mathbf{M}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)