Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Current mirror
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Output resistance ==== [[File:Mirror output resistance.PNG|thumb|300px|Figure 5: Small-signal circuit to determine output resistance of mirror; transistor Q<sub>2</sub> is replaced with its [[hybrid-pi model]]; a test current ''I''<sub>X</sub> at the output generates a voltage ''V''<sub>X</sub>, and the output resistance is ''R''<sub>out</sub> = ''V''<sub>X</sub> / ''I''<sub>X</sub>.]] An idealized treatment of output resistance is given in the footnote.<ref group="nb">An idealized version of the argument in the text, valid for infinite op amp gain, is as follows. If the op amp is replaced by a [[nullor]], voltage ''V''<sub>2</sub> = ''V''<sub>1</sub>, so the currents in the leg resistors are held at the same value. That means the emitter currents of the transistors are the same. If the ''V''<sub>CB</sub> of Q<sub>2</sub> increases, so does the output transistor Ξ² because of the [[Early effect]]: ''Ξ²'' = ''Ξ²''<sub>0</sub>(1 + ''V''<sub>CB</sub> / ''V''<sub>A</sub>). Consequently the base current to Q<sub>2</sub> given by ''I''<sub>B</sub> = ''I''<sub>E</sub> / (''Ξ²'' + 1) decreases and the output current ''I''<sub>out</sub> = ''I''<sub>E</sub> / (1 + 1 / ''Ξ²'') increases slightly because ''Ξ²'' increases slightly. Doing the math, : <math>\begin{align} \frac{1}{R_\text{out}} &= \frac{\partial I_\text{out}}{\partial V_\text{CB}} = I_\text{E} \cdot \frac{\partial}{\partial V_\text{CB}} \left(\frac{\beta}{\beta + 1}\right) = I_\text{E} \cdot \frac{1}{(\beta + 1)^2} \cdot \frac{\partial\beta}{\partial V_\text{CB}} \\ &= \frac{\beta I_\text{E}}{\beta + 1} \cdot \frac{1}{\beta} \cdot \frac{\beta_0}{V_\text{A}} \cdot \frac{1}{\beta + 1} \\ &= I_\text{out} \cdot \frac{1}{1 + \frac{V_\text{CB}}{V_\text{A}}} \cdot \frac{1}{V_\text{A}} \cdot \frac{1}{\beta + 1} \\ &= \frac{1}{(\beta + 1) r_0}, \end{align}</math> where the transistor output resistance is given by r<sub>O</sub> = (''V''<sub>A</sub> + ''V''<sub>CB</sub>) / ''I''<sub>out</sub>. That is, the ideal mirror resistance for the circuit using an ideal op amp [[nullor]] is ''R''<sub>out</sub> = (''Ξ²'' + 1''c'')''r''<sub>O</sub>, in agreement with the value given later in the text when the gain β β.</ref> A small-signal analysis for an op amp with finite gain ''A''<sub>v</sub> but otherwise ideal is based upon Figure 5 (''Ξ²'', ''r''<sub>O</sub> and ''r''<sub>Ο</sub> refer to Q<sub>2</sub>). To arrive at Figure 5, notice that the positive input of the op amp in Figure 3 is at AC ground, so the voltage input to the op amp is simply the AC emitter voltage ''V''<sub>e</sub> applied to its negative input, resulting in a voltage output of β''A''<sub>v</sub> ''V''<sub>e</sub>. Using [[Ohm's law]] across the input resistance ''r''<sub>Ο</sub> determines the small-signal base current ''I''<sub>b</sub> as: : <math> I_\text{b} = \frac{V_\text{e}}\frac{r_\pi}{A_\text{v} + 1} \ .</math> Combining this result with Ohm's law for <math>R_\text{E}</math>, <math>V_\text{e}</math> can be eliminated, to find:<ref group="nb">As ''A''<sub>v</sub> β β, ''V''<sub>e</sub> β 0 and ''I''<sub>b</sub> β ''I''<sub>X</sub>.</ref> :<math> I_\text{b} = I_\text{X} \frac{R_\text{E}}{ R_\text{E} + \frac{r_\pi}{A_\text{v} + 1} }.</math> [[Kirchhoff's voltage law]] from the test source ''I''<sub>X</sub> to the ground of ''R''<sub>E</sub> provides: : <math> V_\text{X} = (I_\text{X} + \beta I_\text{b)} r_\text{O} + (I_\text{X} - I_\text{b} )R_\text{E}.</math> Substituting for ''I''<sub>b</sub> and collecting terms the output resistance ''R''<sub>out</sub> is found to be: : <math>R_\text{out} = \frac{V_\text{X}}{I_\text{X}} = r_\text{O} \left( 1 + \beta \frac{R_\text{E}}{R_\text{E} + \frac{r_\pi}{A_\text{v} + 1}} \right) + R_\text{E} \|\frac{r_\pi}{A_\text{v} + 1}.</math> For a large gain ''A''<sub>v</sub> β« ''r''<sub>Ο</sub> / ''R''<sub>E</sub> the maximum output resistance obtained with this circuit is : <math>R_\text{out} = (\beta + 1)r_O,</math> a substantial improvement over the basic mirror where ''R''<sub>out</sub> = ''r''<sub>O</sub>. The small-signal analysis of the MOSFET circuit of Figure 4 is obtained from the bipolar analysis by setting ''Ξ²'' = ''g''<sub>m</sub> ''r''<sub>Ο</sub> in the formula for ''R''<sub>out</sub> and then letting ''r''<sub>Ο</sub> β β. The result is : <math>R_\text{out} = r_\text{O} \left[1 + g_\text{m} R_\text{E}(A_\text{v} + 1)\right] + R_\text{E}.</math> This time, ''R''<sub>E</sub> is the resistance of the source-leg MOSFETs M<sub>3</sub>, M<sub>4</sub>. Unlike Figure 3, however, as ''A''<sub>v</sub> is increased (holding ''R''<sub>E</sub> fixed in value), ''R''<sub>out</sub> continues to increase, and does not approach a limiting value at large ''A''<sub>v</sub>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)