Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet character
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Conductor; Primitive and induced characters === Any character mod a prime power is also a character mod every larger power. For example, mod 16<ref>This section follows Davenport pp. 35-36,</ref> :<math> \begin{array}{|||} & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\ \hline \chi_{16,3} & 1 & -i & -i & 1 & -1 & i & i & -1 \\ \chi_{16,9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ \chi_{16,15} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ \end{array} </math> <math>\chi_{16,3}</math> has period 16, but <math>\chi_{16,9}</math> has period 8 and <math>\chi_{16,15}</math> has period 4: <math>\chi_{16,9}=\chi_{8,5}</math> and <math>\chi_{16,15}=\chi_{8,7}=\chi_{4,3}.</math> We say that a character <math>\chi</math> of modulus <math>q</math> has a '''quasiperiod of <math>d</math>''' if <math>\chi(m)=\chi(n)</math> for all <math>m</math>, <math>n</math> coprime to <math>q</math> satisfying <math>m\equiv n</math> mod <math>d</math>.<ref>{{cite web |last1=Platt |first1=Dave |title=Dirichlet characters Def. 11.10. |url=https://people.maths.bris.ac.uk/~madjp/Teaching/lecture_dc.pdf |access-date=April 5, 2024}}</ref> For example, <math>\chi_{2,1}</math>, the only Dirichlet character of modulus <math>2</math>, has a quasiperiod of <math>1</math>, but ''not'' a period of <math>1</math> (it has a period of <math>2</math>, though). The smallest positive integer for which <math>\chi</math> is quasiperiodic is the '''conductor''' of <math>\chi</math>.<ref>{{cite web |title=Conductor of a Dirichlet character (reviewed) |url=http://www.lmfdb.org/knowledge/show/character.dirichlet.conductor |website=LMFDB |access-date=April 5, 2024}}</ref> So, for instance, <math>\chi_{2,1}</math> has a conductor of <math>1</math>. The conductor of <math>\chi_{16,3}</math> is 16, the conductor of <math>\chi_{16,9}</math> is 8 and that of <math>\chi_{16,15}</math> and <math>\chi_{8,7}</math> is 4. If the modulus and conductor are equal the character is '''primitive''', otherwise '''imprimitive'''. An imprimitive character is '''induced''' by the character for the smallest modulus: <math>\chi_{16,9}</math> is induced from <math>\chi_{8,5}</math> and <math>\chi_{16,15}</math> and <math>\chi_{8,7}</math> are induced from <math>\chi_{4,3}</math>. A related phenomenon can happen with a character mod the product of primes; its ''nonzero values'' may be periodic with a smaller period. For example, mod 15, :<math> \begin{array}{|||} & 1 & 2 &3 & 4 &5&6 & 7 & 8 &9&10 & 11&12 & 13 & 14 &15 \\ \hline \chi_{15,8} & 1 & i &0 & -1 &0&0 & -i & -i &0&0 & -1 &0& i & 1 &0 \\ \chi_{15,11} & 1 & -1 &0 & 1 &0&0 & 1 & -1 &0&0 & -1 &0& 1 & -1 &0\\ \chi_{15,13} & 1 & -i &0 & -1 &0&0 & -i & i &0&0 & 1 &0 & i & -1 &0\\ \end{array} </math>. The nonzero values of <math>\chi_{15,8}</math> have period 15, but those of <math>\chi_{15,11}</math> have period 3 and those of <math>\chi_{15,13}</math> have period 5. This is easier to see by juxtaposing them with characters mod 3 and 5: :<math> \begin{array}{|||} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 &15\\ \hline \chi_{15,11} & 1 & -1 & 0 & 1 & 0 & 0 & 1 & -1 & 0 & 0 & -1 & 0 & 1 & -1 &0\\ \chi_{3,2} & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 &0\\ \hline \chi_{15,13} & 1 & -i & 0 & -1 & 0 & 0 & -i & i & 0 & 0 & 1 & 0 & i & -1 &0\\ \chi_{5,3} & 1 & -i & i & -1 & 0 & 1 & -i & i & -1 & 0 & 1 & -i & i & -1 &0\\ \end{array} </math>. If a character mod <math>m=qr,\;\; (q,r)=1, \;\;q>1,\;\; r>1</math> is defined as :<math> \chi_{m,\_}(a)= \begin{cases} 0&\text{ if }\gcd(a,m)>1\\ \chi_{q,\_}(a)&\text{ if }\gcd(a,m)=1 \end{cases} </math>, or equivalently as <math> \chi_{m,\_}= \chi_{q,\_} \chi_{r,1},</math> its nonzero values are determined by the character mod <math>q</math> and have period <math>q</math>. The smallest period of the nonzero values is the '''conductor''' of the character. For example, the conductor of <math>\chi_{15,8}</math> is 15, the conductor of <math>\chi_{15,11}</math> is 3, and that of <math>\chi_{15,13}</math> is 5. As in the prime-power case, if the conductor equals the modulus the character is '''primitive''', otherwise '''imprimitive'''. If imprimitive it is '''induced''' from the character with the smaller modulus. For example, <math>\chi_{15,11}</math> is induced from <math>\chi_{3,2}</math> and <math>\chi_{15,13}</math> is induced from <math>\chi_{5,3}</math> The principal character is not primitive.<ref>Davenport classifies it as neither primitive nor imprimitive; the LMFDB induces it from <math>\chi_{1,1}.</math></ref> The character <math>\chi_{m,r}=\chi_{q_1,r}\chi_{q_2,r}...</math> is primitive if and only if each of the factors is primitive.<ref name="twop">Note that if <math>m</math> is two times an odd number, <math>m=2r</math>, all characters mod <math> m </math> are imprimitive because <math>\chi_{m,\_}=\chi_{r,\_}\chi_{2,1}</math></ref> Primitive characters often simplify (or make possible) formulas in the theories of [[Dirichlet L-function|L-functions]]<ref>For example the functional equation of <math>L(s,\chi)</math> is only valid for primitive <math>\chi</math>. See Davenport, p. 85</ref> and [[modular form]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)