Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Characteristic function=== The characteristic function of the Dirichlet distribution is a [[confluent hypergeometric function|confluent]] form of the [[Lauricella hypergeometric series]]. It is given by [[Peter C. B. Phillips|Phillips]] as<ref name="phillips1988">{{cite journal |first=P. C. B. |last=Phillips |year=1988 |url=https://cowles.yale.edu/sites/default/files/files/pub/d08/d0865.pdf |title=The characteristic function of the Dirichlet and multivariate F distribution |journal=Cowles Foundation Discussion Paper 865 }}</ref> <math display=block> CF\left(s_1,\ldots,s_{K-1}\right) = \operatorname{E}\left(e^{i\left(s_1X_1+\cdots+s_{K-1}X_{K-1} \right)} \right)= \Psi^{\left[K-1\right]} (\alpha_1,\ldots,\alpha_{K-1};\alpha_0;is_1,\ldots, is_{K-1}) </math> where <math display=block> \Psi^{[m]} (a_1,\ldots,a_m;c;z_1,\ldots z_m) = \sum\frac{(a_1)_{k_1} \cdots (a_m)_{k_m} \, z_1^{k_1} \cdots z_m^{k_m}}{(c)_k\,k_1!\cdots k_m!}. </math> The sum is over non-negative integers <math>k_1,\ldots,k_m</math> and <math>k=k_1+\cdots+k_m</math>. Phillips goes on to state that this form is "inconvenient for numerical calculation" and gives an alternative in terms of a [[Methods of contour integration|complex path integral]]: <math display=block> \Psi^{[m]} = \frac{\Gamma(c)}{2\pi i}\int_L e^t\,t^{a_1+\cdots+a_m-c}\,\prod_{j=1}^m (t-z_j)^{-a_j} \, dt</math> where {{mvar|L}} denotes any path in the complex plane originating at <math>-\infty</math>, encircling in the positive direction all the singularities of the integrand and returning to <math>-\infty</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)